README_en.md 20.8 KB
Newer Older
W
wangguanzhong 已提交
1 2
[简体中文](README.md) | English

Z
zhiboniu 已提交
3
<img src="https://user-images.githubusercontent.com/48054808/185032511-0c97b21c-8bab-4ab1-89ee-16e5e81c22cc.png" title="" alt="" data-align="center">
W
wangguanzhong 已提交
4

Z
zhiboniu 已提交
5
**PaddleDetection has provide out-of-the-box tools in pedestrian and vehicle analysis, and it support multiple input format such as images/videos/multi-videos/online video streams. This make it popular in smart-city\smart transportation and so on. It can be deployed easily with GPU server and TensorRT, which achieves real-time performace.**
W
wangguanzhong 已提交
6

Z
zhiboniu 已提交
7
- 🚶‍♂️🚶‍♀️ **PP-Human has four major toolbox for pedestrian analysis: five example of behavior analysis、26 attributes recognition、in-out counting、multi-target-multi-camera tracking(REID).**
W
wangguanzhong 已提交
8

Z
zhiboniu 已提交
9
- 🚗🚙 **PP-Vehicle has four major toolbox for vehicle analysis: The license plate recognition、vechile attributes、in-out counting、illegal_parking recognition.**
W
wangguanzhong 已提交
10

Z
zhiboniu 已提交
11
![](https://user-images.githubusercontent.com/48054808/184843170-c3ef7d29-913b-4c6e-b533-b83892a8b0e2.gif)
W
wangguanzhong 已提交
12 13 14

## 📣 Updates

Z
zhiboniu 已提交
15 16
- 🔥🔥🔥 **2022.8.20:PP-Vehicle was first launched with four major toolbox for vehicle analysis,and it also provide detailed documentation for user to train with their own datas and model optimize.**
- 🔥 2022.7.13:PP-Human v2 launched with a full upgrade of four industrial features: behavior analysis, attributes recognition, visitor traffic statistics and ReID. It provides a strong core algorithm for pedestrian detection, tracking and attribute analysis with a simple and detailed development process and model optimization strategy.
W
wangguanzhong 已提交
17 18 19 20 21
- 2022.4.18: Add  PP-Human practical tutorials, including training, deployment, and action expansion. Details for AIStudio project please see [Link](https://aistudio.baidu.com/aistudio/projectdetail/3842982)

- 2022.4.10: Add PP-Human examples; empower refined management of intelligent community management. A quick start for AIStudio [Link](https://aistudio.baidu.com/aistudio/projectdetail/3679564)
- 2022.4.5: Launch the real-time pedestrian analysis tool PP-Human. It supports pedestrian tracking, visitor traffic statistics, attributes recognition, and falling detection. Due to its specific optimization of real-scene data, it can accurately recognize various falling gestures, and adapt to different environmental backgrounds, light and camera angles.

Z
zhiboniu 已提交
22 23 24
![](https://user-images.githubusercontent.com/48054808/184843170-c3ef7d29-913b-4c6e-b533-b83892a8b0e2.gif)


W
wangguanzhong 已提交
25 26
## 🔮 Features and demonstration

Z
zhiboniu 已提交
27 28
### PP-Human

W
wangguanzhong 已提交
29 30 31 32 33 34 35
| ⭐ Feature                                          | 💟 Advantages                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 💡Example                                                                                                                                     |
| -------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | --------------------------------------------------------------------------------------------------------------------------------------------- |
| **ReID**                                           | Extraordinary performance: special optimization for technical challenges such as target occlusion, uncompleted and blurry objects to achieve mAP 98.8, 1.5ms/person                                                                                                                                                                                                                                                                                                                                                    | <img src="https://user-images.githubusercontent.com/48054808/173037607-0a5deadc-076e-4dcc-bd96-d54eea205f1f.png" title="" alt="" width="191"> |
| **Attribute analysis**                             | Compatible with a variety of data formats: support for images, video input<br/><br/>High performance: Integrated open-sourced datasets with real enterprise data for training, achieved mAP 94.86, 2ms/person<br/><br/>Support 26 attributes: gender, age, glasses, tops, shoes, hats, backpacks and other 26 high-frequency attributes                                                                                                                                                                                | <img src="https://user-images.githubusercontent.com/48054808/173036043-68b90df7-e95e-4ada-96ae-20f52bc98d7c.png" title="" alt="" width="207"> |
| **Behaviour detection**                            | Rich function: support five high-frequency anomaly behavior detection of falling, fighting, smoking, telephoning, and intrusion<br/><br/>Robust: unlimited by different environmental backgrounds, light, and camera angles.<br/><br/>High performance: Compared with video recognition technology, it takes significantly smaller computation resources; support localization and service-oriented rapid deployment<br/><br/>Fast training: only takes 15 minutes to produce high precision behavior detection models | <img src="https://user-images.githubusercontent.com/48054808/173034825-623e4f78-22a5-4f14-9b83-dc47aa868478.gif" title="" alt="" width="209"> |
| **Visitor traffic statistics**<br>**Trace record** | Simple and easy to use: single parameter to initiate functions of visitor traffic statistics and trace record                                                                                                                                                                                                                                                                                                                                                                                                          | <img src="https://user-images.githubusercontent.com/22989727/174736440-87cd5169-c939-48f8-90a1-0495a1fcb2b1.gif" title="" alt="" width="200"> |

Z
zhiboniu 已提交
36 37 38 39 40 41 42 43 44 45
### PP-Vehicle

| ⭐ Feature       | 💟 Advantages                                                                                    | 💡 Example                                                                                                                                         |
| ---------- | ------------------------------------------------------------------------------------------ | --------------------------------------------------------------------------------------------------------------------------------------------- |
| **License Plate-Recognition**   | Both support for traditional plate and new green plate <br/><br/> Sample the frame in a time windows to recognice the plate license, and vots the license in many samples, which lead less compute cost and better accuracy, and the result is much more stable. <br/><br/>  hmean of text detector: 0.979;  accuracy of recognition model: 0.773   <br/><br/>                                  | <img title="" src="https://user-images.githubusercontent.com/48054808/185027987-6144cafd-0286-4c32-8425-7ab9515d1ec3.png" alt="" width="191"> |
| **Vehicle Attributes** | Identify 10 vehicle colors and 9 models <br/><br/> More powerfull backbone: PP-HGNet/PP-LCNet, with higher accuracy and faster speed <br/><br/> accuracy of model: 90.81 <br/><br/>  | <img title="" src="https://user-images.githubusercontent.com/48054808/185044490-00edd930-1885-4e79-b3d4-3a39a77dea93.gif" alt="" width="207"> |
| **Illegal Parking**   | Easy to use with one line command, and define the illegal area by yourself <br/><br/> Get the license of illegal car <br/><br/>  | <img title="" src="https://user-images.githubusercontent.com/48054808/185028419-58ae0af8-a035-42e7-9583-25f5e4ce0169.png" alt="" width="209"> |
| **in-out counting**  | Easy to use with one line command, and define the in-out line by yourself <br/><br/> Target route visualize with high tracking performance        | <img title="" src="https://user-images.githubusercontent.com/48054808/185028798-9e07379f-7486-4266-9d27-3aec943593e0.gif" alt="" width="200"> |


W
wangguanzhong 已提交
46 47 48
## 🗳 Model Zoo

<details>
49
<summary><b>PP-Human End-to-end model results (click to expand)</b></summary>
W
wangguanzhong 已提交
50 51 52 53 54 55 56

| Task                                   | End-to-End Speed(ms) | Model                                                                                                                                                                                                                                                                                                                           | Size                                                                                                   |
|:--------------------------------------:|:--------------------:|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------:|
| Pedestrian detection (high precision)  | 25.1ms               | [Multi-object tracking](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_l_36e_pipeline.zip)                                                                                                                                                                                                                      | 182M                                                                                                   |
| Pedestrian detection (lightweight)     | 16.2ms               | [Multi-object tracking](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_s_36e_pipeline.zip)                                                                                                                                                                                                                      | 27M                                                                                                    |
| Pedestrian tracking (high precision)   | 31.8ms               | [Multi-object tracking](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_l_36e_pipeline.zip)                                                                                                                                                                                                                      | 182M                                                                                                   |
| Pedestrian tracking (lightweight)      | 21.0ms               | [Multi-object tracking](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_s_36e_pipeline.zip)                                                                                                                                                                                                                      | 27M                                                                                                    |
Z
zhiboniu 已提交
57
|  MTMCT(REID)  |  Single Person 1.5ms | [REID](https://bj.bcebos.com/v1/paddledet/models/pipeline/reid_model.zip) | REID:92M |
W
wangguanzhong 已提交
58 59 60 61 62 63 64 65 66 67
| Attribute recognition (high precision) | Single person8.5ms   | [Object detection](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_l_36e_pipeline.zip)<br> [Attribute recognition](https://bj.bcebos.com/v1/paddledet/models/pipeline/strongbaseline_r50_30e_pa100k.zip)                                                                                                         | Object detection:182M<br>Attribute recognition:86M                                                     |
| Attribute recognition (lightweight)    | Single person 7.1ms  | [Object detection](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_l_36e_pipeline.zip)<br> [Attribute recognition](https://bj.bcebos.com/v1/paddledet/models/pipeline/strongbaseline_r50_30e_pa100k.zip)                                                                                                         | Object detection:182M<br>Attribute recognition:86M                                                     |
| Falling detection                      | Single person 10ms   | [Multi-object tracking](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_l_36e_pipeline.zip) <br> [Keypoint detection](https://bj.bcebos.com/v1/paddledet/models/pipeline/dark_hrnet_w32_256x192.zip) <br> [Behavior detection based on key points](https://bj.bcebos.com/v1/paddledet/models/pipeline/STGCN.zip) | Multi-object tracking:182M<br>Keypoint detection:101M<br>Behavior detection based on key points: 21.8M |
| Intrusion detection                    | 31.8ms               | [Multi-object tracking](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_l_36e_pipeline.zip)                                                                                                                                                                                                                      | 182M                                                                                                   |
| Fighting detection                     | 19.7ms               | [Video classification](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_l_36e_pipeline.zip)                                                                                                                                                                                                                       | 90M                                                                                                    |
| Smoking detection                      | Single person 15.1ms | [Object detection](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_l_36e_pipeline.zip)<br>[Object detection based on Human Id](https://bj.bcebos.com/v1/paddledet/models/pipeline/ppyoloe_crn_s_80e_smoking_visdrone.zip)                                                                                        | Object detection:182M<br>Object detection based on Human ID: 27M                                       |
| Phoning detection                      | Single person ms     | [Object detection](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_l_36e_pipeline.zip)<br>[Image classification based on Human ID](https://bj.bcebos.com/v1/paddledet/models/pipeline/PPHGNet_tiny_calling_halfbody.zip)                                                                                         | Object detection:182M<br>Image classification based on Human ID:45M                                    |

</details>

68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
<details>
<summary><b>PP-Vehicle End-to-end model results (click to expand)</b></summary>

| Task                                   | End-to-End Speed(ms) | Model                                                                                                                                                                                                                                                                                                                           | Size                                                                                                   |
|:--------------------------------------:|:--------------------:|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------:|
| Vehicle detection (high precision)  | 25.7ms               | [object detection](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_l_36e_ppvehicle.zip)                                                                                                                                                                                                                      | 182M                                                                                                   |
| Vehicle detection (lightweight)     | 13.2ms               | [object detection](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_s_36e_ppvehicle.zip)                                                                                                                                                                                                                      | 27M                                                                                                    |
| Vehicle tracking (high precision)   | 40ms               | [multi-object tracking](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_l_36e_ppvehicle.zip)                                                                                                                                                                                                                      | 182M                                                                                                   |
| Vehicle tracking (lightweight)      | 25ms               | [multi-object tracking](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_s_36e_pipeline.zip)                                                                                                                                                                                                                      | 27M                                                                                                    |
| Plate Recognition                   | 4.68ms     | [plate detection](https://bj.bcebos.com/v1/paddledet/models/pipeline/ch_PP-OCRv3_det_infer.tar.gz)<br>[plate recognition](https://bj.bcebos.com/v1/paddledet/models/pipeline/ch_PP-OCRv3_rec_infer.tar.gz)                                                                                         | Plate detection:3.9M<br>Plate recognition:12M                                    |
| Vehicle attribute      | 7.31ms               | [attribute recognition](https://bj.bcebos.com/v1/paddledet/models/pipeline/vehicle_attribute_model.zip)                                                                                                                                                                                                                      | 7.2M                                                                                                    |

</details>


W
wangguanzhong 已提交
83 84 85 86
Click to download the model, then unzip and save it in the `. /output_inference`.

## 📚 Doc Tutorials

Z
zhiboniu 已提交
87 88 89
### 🚶‍♀️ PP-Human

#### [A Quick Start](docs/tutorials/PPHuman_QUICK_STARTED_en.md)
W
wangguanzhong 已提交
90

Z
zhiboniu 已提交
91
#### Pedestrian attribute/feature recognition
W
wangguanzhong 已提交
92

93
* [A quick start](docs/tutorials/pphuman_attribute_en.md)
Z
zhiboniu 已提交
94

95
* [Customized development tutorials](../../docs/advanced_tutorials/customization/pphuman_attribute_en.md)
W
wangguanzhong 已提交
96

Z
zhiboniu 已提交
97
#### Behavior detection
W
wangguanzhong 已提交
98

99
* [A quick start](docs/tutorials/pphuman_action_en.md)
Z
zhiboniu 已提交
100

101
* [Customized development tutorials](../../docs/advanced_tutorials/customization/action_recognotion/README_en.md)
W
wangguanzhong 已提交
102

Z
zhiboniu 已提交
103
#### ReID
W
wangguanzhong 已提交
104

105
* [A quick start](docs/tutorials/pphuman_mtmct_en.md)
Z
zhiboniu 已提交
106

107
* [Customized development tutorials](../../docs/advanced_tutorials/customization/pphuman_mtmct_en.md)
W
wangguanzhong 已提交
108

Z
zhiboniu 已提交
109
#### Pedestrian tracking, visitor traffic statistics, trace records
W
wangguanzhong 已提交
110

111
* [A quick start](docs/tutorials/pphuman_mot_en.md)
Z
zhiboniu 已提交
112

113
* [Customized development tutorials](../../docs/advanced_tutorials/customization/pphuman_mot_en.md)
Z
zhiboniu 已提交
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143


### 🚘 PP-Vehicle

#### [A Quick Start](docs/tutorials/PPVehicle_QUICK_STARTED.md)

#### Vehicle Plate License

- [A quick start](docs/tutorials/ppvehicle_plate_en.md)

- [Customized development tutorials](../../docs/advanced_tutorials/customization/ppvehicle_plate.md)

#### Vehicle Attributes

- [A quick start](docs/tutorials/ppvehicle_attribute_en.md)

- [Customized development tutorials](../../docs/advanced_tutorials/customization/ppvehicle_attribute_en.md)

#### Illegal Parking

- [A quick start](docs/tutorials/ppvehicle_illegal_parking_en.md)

- [Customized development tutorials](../../docs/advanced_tutorials/customization/pphuman_mot_en.md)

#### Vehicle Tracking/in-out counint/Route Visualize

- [A quick start](docs/tutorials/ppvehicle_mot_en.md)

- [Customized development tutorials](../../docs/advanced_tutorials/customization/pphuman_mot_en.md)