README_en.md 17.7 KB
Newer Older
W
wangguanzhong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
[简体中文](README.md) | English

# Real Time Pedestrian Analysis Tool PP-Human

**PP-Human is the industry's first open-sourced real-time pedestrian analysis tool based on PaddlePaddle deep learning framework. It has three major features: rich functions, wide application, and efficient deployment.**



![](https://user-images.githubusercontent.com/22989727/178965250-14be25c1-125d-4d90-8642-7a9b01fecbe2.gif)



PP-Human supports various inputs such as images, single-camera, and multi-camera videos. It covers multi-object tracking, attributes recognition, behavior analysis, visitor traffic statistics, and trace records. PP-Human can be applied to fields including Smart Transportation, Smart Community, and industrial inspections. It can also be deployed on server sides and TensorRT accelerator. On the T4 server, it could achieve real-time analysis.

## 📣 Updates

17
- 🔥 **2022.7.13:PP-Human v2 launched with a full upgrade of four industrial features: behavior analysis, attributes recognition, visitor traffic statistics and ReID. It provides a strong core algorithm for pedestrian detection, tracking and attribute analysis with a simple and detailed release/2.5ment process and model optimization strategy.**
W
wangguanzhong 已提交
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
- 2022.4.18: Add  PP-Human practical tutorials, including training, deployment, and action expansion. Details for AIStudio project please see [Link](https://aistudio.baidu.com/aistudio/projectdetail/3842982)

- 2022.4.10: Add PP-Human examples; empower refined management of intelligent community management. A quick start for AIStudio [Link](https://aistudio.baidu.com/aistudio/projectdetail/3679564)
- 2022.4.5: Launch the real-time pedestrian analysis tool PP-Human. It supports pedestrian tracking, visitor traffic statistics, attributes recognition, and falling detection. Due to its specific optimization of real-scene data, it can accurately recognize various falling gestures, and adapt to different environmental backgrounds, light and camera angles.

## 🔮 Features and demonstration

| ⭐ Feature                                          | 💟 Advantages                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 💡Example                                                                                                                                     |
| -------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | --------------------------------------------------------------------------------------------------------------------------------------------- |
| **ReID**                                           | Extraordinary performance: special optimization for technical challenges such as target occlusion, uncompleted and blurry objects to achieve mAP 98.8, 1.5ms/person                                                                                                                                                                                                                                                                                                                                                    | <img src="https://user-images.githubusercontent.com/48054808/173037607-0a5deadc-076e-4dcc-bd96-d54eea205f1f.png" title="" alt="" width="191"> |
| **Attribute analysis**                             | Compatible with a variety of data formats: support for images, video input<br/><br/>High performance: Integrated open-sourced datasets with real enterprise data for training, achieved mAP 94.86, 2ms/person<br/><br/>Support 26 attributes: gender, age, glasses, tops, shoes, hats, backpacks and other 26 high-frequency attributes                                                                                                                                                                                | <img src="https://user-images.githubusercontent.com/48054808/173036043-68b90df7-e95e-4ada-96ae-20f52bc98d7c.png" title="" alt="" width="207"> |
| **Behaviour detection**                            | Rich function: support five high-frequency anomaly behavior detection of falling, fighting, smoking, telephoning, and intrusion<br/><br/>Robust: unlimited by different environmental backgrounds, light, and camera angles.<br/><br/>High performance: Compared with video recognition technology, it takes significantly smaller computation resources; support localization and service-oriented rapid deployment<br/><br/>Fast training: only takes 15 minutes to produce high precision behavior detection models | <img src="https://user-images.githubusercontent.com/48054808/173034825-623e4f78-22a5-4f14-9b83-dc47aa868478.gif" title="" alt="" width="209"> |
| **Visitor traffic statistics**<br>**Trace record** | Simple and easy to use: single parameter to initiate functions of visitor traffic statistics and trace record                                                                                                                                                                                                                                                                                                                                                                                                          | <img src="https://user-images.githubusercontent.com/22989727/174736440-87cd5169-c939-48f8-90a1-0495a1fcb2b1.gif" title="" alt="" width="200"> |

## 🗳 Model Zoo

<details>
35
<summary><b>PP-Human End-to-end model results (click to expand)</b></summary>
W
wangguanzhong 已提交
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52

| Task                                   | End-to-End Speed(ms) | Model                                                                                                                                                                                                                                                                                                                           | Size                                                                                                   |
|:--------------------------------------:|:--------------------:|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------:|
| Pedestrian detection (high precision)  | 25.1ms               | [Multi-object tracking](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_l_36e_pipeline.zip)                                                                                                                                                                                                                      | 182M                                                                                                   |
| Pedestrian detection (lightweight)     | 16.2ms               | [Multi-object tracking](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_s_36e_pipeline.zip)                                                                                                                                                                                                                      | 27M                                                                                                    |
| Pedestrian tracking (high precision)   | 31.8ms               | [Multi-object tracking](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_l_36e_pipeline.zip)                                                                                                                                                                                                                      | 182M                                                                                                   |
| Pedestrian tracking (lightweight)      | 21.0ms               | [Multi-object tracking](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_s_36e_pipeline.zip)                                                                                                                                                                                                                      | 27M                                                                                                    |
| Attribute recognition (high precision) | Single person8.5ms   | [Object detection](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_l_36e_pipeline.zip)<br> [Attribute recognition](https://bj.bcebos.com/v1/paddledet/models/pipeline/strongbaseline_r50_30e_pa100k.zip)                                                                                                         | Object detection:182M<br>Attribute recognition:86M                                                     |
| Attribute recognition (lightweight)    | Single person 7.1ms  | [Object detection](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_l_36e_pipeline.zip)<br> [Attribute recognition](https://bj.bcebos.com/v1/paddledet/models/pipeline/strongbaseline_r50_30e_pa100k.zip)                                                                                                         | Object detection:182M<br>Attribute recognition:86M                                                     |
| Falling detection                      | Single person 10ms   | [Multi-object tracking](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_l_36e_pipeline.zip) <br> [Keypoint detection](https://bj.bcebos.com/v1/paddledet/models/pipeline/dark_hrnet_w32_256x192.zip) <br> [Behavior detection based on key points](https://bj.bcebos.com/v1/paddledet/models/pipeline/STGCN.zip) | Multi-object tracking:182M<br>Keypoint detection:101M<br>Behavior detection based on key points: 21.8M |
| Intrusion detection                    | 31.8ms               | [Multi-object tracking](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_l_36e_pipeline.zip)                                                                                                                                                                                                                      | 182M                                                                                                   |
| Fighting detection                     | 19.7ms               | [Video classification](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_l_36e_pipeline.zip)                                                                                                                                                                                                                       | 90M                                                                                                    |
| Smoking detection                      | Single person 15.1ms | [Object detection](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_l_36e_pipeline.zip)<br>[Object detection based on Human Id](https://bj.bcebos.com/v1/paddledet/models/pipeline/ppyoloe_crn_s_80e_smoking_visdrone.zip)                                                                                        | Object detection:182M<br>Object detection based on Human ID: 27M                                       |
| Phoning detection                      | Single person ms     | [Object detection](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_l_36e_pipeline.zip)<br>[Image classification based on Human ID](https://bj.bcebos.com/v1/paddledet/models/pipeline/PPHGNet_tiny_calling_halfbody.zip)                                                                                         | Object detection:182M<br>Image classification based on Human ID:45M                                    |

</details>

53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
<details>
<summary><b>PP-Vehicle End-to-end model results (click to expand)</b></summary>

| Task                                   | End-to-End Speed(ms) | Model                                                                                                                                                                                                                                                                                                                           | Size                                                                                                   |
|:--------------------------------------:|:--------------------:|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------:|
| Vehicle detection (high precision)  | 25.7ms               | [object detection](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_l_36e_ppvehicle.zip)                                                                                                                                                                                                                      | 182M                                                                                                   |
| Vehicle detection (lightweight)     | 13.2ms               | [object detection](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_s_36e_ppvehicle.zip)                                                                                                                                                                                                                      | 27M                                                                                                    |
| Vehicle tracking (high precision)   | 40ms               | [multi-object tracking](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_l_36e_ppvehicle.zip)                                                                                                                                                                                                                      | 182M                                                                                                   |
| Vehicle tracking (lightweight)      | 25ms               | [multi-object tracking](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_s_36e_pipeline.zip)                                                                                                                                                                                                                      | 27M                                                                                                    |
| Plate Recognition                   | 4.68ms     | [plate detection](https://bj.bcebos.com/v1/paddledet/models/pipeline/ch_PP-OCRv3_det_infer.tar.gz)<br>[plate recognition](https://bj.bcebos.com/v1/paddledet/models/pipeline/ch_PP-OCRv3_rec_infer.tar.gz)                                                                                         | Plate detection:3.9M<br>Plate recognition:12M                                    |
| Vehicle attribute      | 7.31ms               | [attribute recognition](https://bj.bcebos.com/v1/paddledet/models/pipeline/vehicle_attribute_model.zip)                                                                                                                                                                                                                      | 7.2M                                                                                                    |

</details>


W
wangguanzhong 已提交
68 69 70 71
Click to download the model, then unzip and save it in the `. /output_inference`.

## 📚 Doc Tutorials

72
### [A Quick Start](docs/tutorials/PPHuman_QUICK_STARTED_en.md)
W
wangguanzhong 已提交
73 74 75

### Pedestrian attribute/feature recognition

76 77
* [A quick start](docs/tutorials/pphuman_attribute_en.md)
* [Customized development tutorials](../../docs/advanced_tutorials/customization/pphuman_attribute_en.md)
W
wangguanzhong 已提交
78 79 80 81 82 83
  * Data Preparation
  * Model Optimization
  * New Attributes

### Behavior detection

84
* [A quick start](docs/tutorials/pphuman_action_en.md)
W
wangguanzhong 已提交
85 86
  * Falling detection
  * Fighting detection
87
* [Customized development tutorials](../../docs/advanced_tutorials/customization/action_recognotion/README_en.md)
W
wangguanzhong 已提交
88 89 90 91 92 93 94
  * Solution Selection
  * Data Preparation
  * Model Optimization
  * New Attributes

### ReID

95 96
* [A quick start](docs/tutorials/pphuman_mtmct_en.md)
* [Customized development tutorials](../../docs/advanced_tutorials/customization/pphuman_mtmct_en.md)
W
wangguanzhong 已提交
97 98 99 100 101
  * Data Preparation
  * Model Optimization

### Pedestrian tracking, visitor traffic statistics, trace records

102
* [A quick start](docs/tutorials/pphuman_mot_en.md)
W
wangguanzhong 已提交
103 104 105
  * Pedestrian tracking,
  * Visitor traffic statistics
  * Regional intrusion diagnosis and counting
106
* [Customized development tutorials](../../docs/advanced_tutorials/customization/pphuman_mot_en.md)
W
wangguanzhong 已提交
107 108
  * Data Preparation
  * Model Optimization