res2net.py 7.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from paddle import fluid

from ppdet.core.workspace import register, serializable
from .nonlocal_helper import add_space_nonlocal
M
Manuel Garcia 已提交
23
from .resnet import ResNet
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

__all__ = ['Res2Net', 'Res2NetC5']


@register
@serializable
class Res2Net(ResNet):
    """
    Res2Net, see https://arxiv.org/abs/1904.01169
    Args:
        depth (int): Res2Net depth, should be 50, 101, 152, 200.
        width (int): Res2Net width
        scales (int): Res2Net scale
        freeze_at (int): freeze the backbone at which stage
        norm_type (str): normalization type, 'bn'/'sync_bn'/'affine_channel'
        freeze_norm (bool): freeze normalization layers
        norm_decay (float): weight decay for normalization layer weights
        variant (str): Res2Net variant, supports 'a', 'b', 'c', 'd' currently
        feature_maps (list): index of stages whose feature maps are returned
        dcn_v2_stages (list): index of stages who select deformable conv v2
        nonlocal_stages (list): index of stages who select nonlocal networks
    """
    __shared__ = ['norm_type', 'freeze_norm', 'weight_prefix_name']

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
    def __init__(
            self,
            depth=50,
            width=26,
            scales=4,
            freeze_at=2,
            norm_type='bn',
            freeze_norm=True,
            norm_decay=0.,
            variant='b',
            feature_maps=[2, 3, 4, 5],
            dcn_v2_stages=[],
            weight_prefix_name='',
            nonlocal_stages=[], ):
        super(Res2Net, self).__init__(
            depth=depth,
            freeze_at=freeze_at,
            norm_type=norm_type,
            freeze_norm=freeze_norm,
            norm_decay=norm_decay,
            variant=variant,
            feature_maps=feature_maps,
            dcn_v2_stages=dcn_v2_stages,
            weight_prefix_name=weight_prefix_name,
            nonlocal_stages=nonlocal_stages)

        assert depth >= 50, "just support depth>=50 in res2net, but got depth=".format(
            depth)
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
        # res2net config
        self.scales = scales
        self.width = width
        basic_width = self.width * self.scales
        self.num_filters1 = [basic_width * t for t in [1, 2, 4, 8]]
        self.num_filters2 = [256 * t for t in [1, 2, 4, 8]]
        self.num_filters = [64, 128, 384, 768]

    def bottleneck(self,
                   input,
                   num_filters1,
                   num_filters2,
                   stride,
                   is_first,
                   name,
                   dcn_v2=False):
        conv0 = self._conv_norm(
93 94 95 96 97
            input=input,
            num_filters=num_filters1,
            filter_size=1,
            stride=1,
            act='relu',
98 99 100 101 102 103
            name=name + '_branch2a')

        xs = fluid.layers.split(conv0, self.scales, 1)
        ys = []
        for s in range(self.scales - 1):
            if s == 0 or stride == 2:
104 105 106 107 108 109 110 111 112
                ys.append(
                    self._conv_norm(
                        input=xs[s],
                        num_filters=num_filters1 // self.scales,
                        stride=stride,
                        filter_size=3,
                        act='relu',
                        name=name + '_branch2b_' + str(s + 1),
                        dcn_v2=dcn_v2))
113
            else:
114 115 116 117 118 119 120 121 122
                ys.append(
                    self._conv_norm(
                        input=xs[s] + ys[-1],
                        num_filters=num_filters1 // self.scales,
                        stride=stride,
                        filter_size=3,
                        act='relu',
                        name=name + '_branch2b_' + str(s + 1),
                        dcn_v2=dcn_v2))
123 124 125 126

        if stride == 1:
            ys.append(xs[-1])
        else:
127 128 129 130 131 132 133
            ys.append(
                fluid.layers.pool2d(
                    input=xs[-1],
                    pool_size=3,
                    pool_stride=stride,
                    pool_padding=1,
                    pool_type='avg'))
134 135 136 137 138 139

        conv1 = fluid.layers.concat(ys, axis=1)
        conv2 = self._conv_norm(
            input=conv1,
            num_filters=num_filters2,
            filter_size=1,
140 141
            act=None,
            name=name + "_branch2c")
142

143 144
        short = self._shortcut(
            input, num_filters2, stride, is_first, name=name + "_branch1")
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165

        return fluid.layers.elementwise_add(
            x=short, y=conv2, act='relu', name=name + ".add.output.5")

    def layer_warp(self, input, stage_num):
        """
        Args:
            input (Variable): input variable.
            stage_num (int): the stage number, should be 2, 3, 4, 5

        Returns:
            The last variable in endpoint-th stage.
        """
        assert stage_num in [2, 3, 4, 5]

        stages, block_func = self.depth_cfg[self.depth]
        count = stages[stage_num - 2]

        ch_out = self.stage_filters[stage_num - 2]
        is_first = False if stage_num != 2 else True
        dcn_v2 = True if stage_num in self.dcn_v2_stages else False
166 167 168 169

        num_filters1 = self.num_filters1[stage_num - 2]
        num_filters2 = self.num_filters2[stage_num - 2]

170 171
        nonlocal_mod = 1000
        if stage_num in self.nonlocal_stages:
172 173 174
            nonlocal_mod = self.nonlocal_mod_cfg[
                self.depth] if stage_num == 4 else 2

175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
        # Make the layer name and parameter name consistent
        # with ImageNet pre-trained model
        conv = input
        for i in range(count):
            conv_name = self.na.fix_layer_warp_name(stage_num, count, i)
            if self.depth < 50:
                is_first = True if i == 0 and stage_num == 2 else False
            conv = block_func(
                input=conv,
                num_filters1=num_filters1,
                num_filters2=num_filters2,
                stride=2 if i == 0 and stage_num != 2 else 1,
                is_first=is_first,
                name=conv_name,
                dcn_v2=dcn_v2)
190

191 192
            # add non local model
            dim_in = conv.shape[1]
193
            nonlocal_name = "nonlocal_conv{}".format(stage_num)
194
            if i % nonlocal_mod == nonlocal_mod - 1:
195 196 197
                conv = add_space_nonlocal(conv, dim_in, dim_in,
                                          nonlocal_name + '_{}'.format(i),
                                          int(dim_in / 2))
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
        return conv


@register
@serializable
class Res2NetC5(Res2Net):
    __doc__ = Res2Net.__doc__

    def __init__(self,
                 depth=50,
                 width=26,
                 scales=4,
                 freeze_at=2,
                 norm_type='bn',
                 freeze_norm=True,
                 norm_decay=0.,
                 variant='b',
                 feature_maps=[5],
                 weight_prefix_name=''):
217 218 219
        super(Res2NetC5, self).__init__(depth, width, scales, freeze_at,
                                        norm_type, freeze_norm, norm_decay,
                                        variant, feature_maps)
220
        self.severed_head = True