distill.py 4.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import paddle
import paddle.nn as nn
import paddle.nn.functional as F

M
Manuel Garcia 已提交
23
from ppdet.core.workspace import register, create, load_config
24 25
from ppdet.modeling import ops
from ppdet.utils.checkpoint import load_pretrain_weight
M
Manuel Garcia 已提交
26 27
from ppdet.utils.logger import setup_logger

28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
logger = setup_logger(__name__)


class DistillModel(nn.Layer):
    def __init__(self, cfg, slim_cfg):
        super(DistillModel, self).__init__()

        self.student_model = create(cfg.architecture)
        logger.debug('Load student model pretrain_weights:{}'.format(
            cfg.pretrain_weights))
        load_pretrain_weight(self.student_model, cfg.pretrain_weights)

        slim_cfg = load_config(slim_cfg)
        self.teacher_model = create(slim_cfg.architecture)
        self.distill_loss = create(slim_cfg.distill_loss)
        logger.debug('Load teacher model pretrain_weights:{}'.format(
            slim_cfg.pretrain_weights))
        load_pretrain_weight(self.teacher_model, slim_cfg.pretrain_weights)

        for param in self.teacher_model.parameters():
            param.trainable = False

    def parameters(self):
        return self.student_model.parameters()

    def forward(self, inputs):
        if self.training:
            teacher_loss = self.teacher_model(inputs)
            student_loss = self.student_model(inputs)
            loss = self.distill_loss(self.teacher_model, self.student_model)
            student_loss['distill_loss'] = loss
            student_loss['teacher_loss'] = teacher_loss['loss']
            student_loss['loss'] += student_loss['distill_loss']
            return student_loss
        else:
            return self.student_model(inputs)


@register
class DistillYOLOv3Loss(nn.Layer):
    def __init__(self, weight=1000):
        super(DistillYOLOv3Loss, self).__init__()
        self.weight = weight

    def obj_weighted_reg(self, sx, sy, sw, sh, tx, ty, tw, th, tobj):
        loss_x = ops.sigmoid_cross_entropy_with_logits(sx, F.sigmoid(tx))
        loss_y = ops.sigmoid_cross_entropy_with_logits(sy, F.sigmoid(ty))
        loss_w = paddle.abs(sw - tw)
        loss_h = paddle.abs(sh - th)
        loss = paddle.add_n([loss_x, loss_y, loss_w, loss_h])
        weighted_loss = paddle.mean(loss * F.sigmoid(tobj))
        return weighted_loss

    def obj_weighted_cls(self, scls, tcls, tobj):
        loss = ops.sigmoid_cross_entropy_with_logits(scls, F.sigmoid(tcls))
        weighted_loss = paddle.mean(paddle.multiply(loss, F.sigmoid(tobj)))
        return weighted_loss

    def obj_loss(self, sobj, tobj):
        obj_mask = paddle.cast(tobj > 0., dtype="float32")
        obj_mask.stop_gradient = True
        loss = paddle.mean(
            ops.sigmoid_cross_entropy_with_logits(sobj, obj_mask))
        return loss

    def forward(self, teacher_model, student_model):
        teacher_distill_pairs = teacher_model.yolo_head.loss.distill_pairs
        student_distill_pairs = student_model.yolo_head.loss.distill_pairs
        distill_reg_loss, distill_cls_loss, distill_obj_loss = [], [], []
        for s_pair, t_pair in zip(student_distill_pairs, teacher_distill_pairs):
            distill_reg_loss.append(
                self.obj_weighted_reg(s_pair[0], s_pair[1], s_pair[2], s_pair[
                    3], t_pair[0], t_pair[1], t_pair[2], t_pair[3], t_pair[4]))
            distill_cls_loss.append(
                self.obj_weighted_cls(s_pair[5], t_pair[5], t_pair[4]))
            distill_obj_loss.append(self.obj_loss(s_pair[4], t_pair[4]))
        distill_reg_loss = paddle.add_n(distill_reg_loss)
        distill_cls_loss = paddle.add_n(distill_cls_loss)
        distill_obj_loss = paddle.add_n(distill_obj_loss)
        loss = (distill_reg_loss + distill_cls_loss + distill_obj_loss
                ) * self.weight
        return loss