centernet_fpn.py 6.4 KB
Newer Older
F
FlyingQianMM 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
import math
import paddle
import paddle.nn as nn
from paddle.nn.initializer import KaimingUniform
from ppdet.core.workspace import register, serializable
from ppdet.modeling.layers import ConvNormLayer
from ..shape_spec import ShapeSpec


def fill_up_weights(up):
    weight = up.weight
    f = math.ceil(weight.shape[2] / 2)
    c = (2 * f - 1 - f % 2) / (2. * f)
    for i in range(weight.shape[2]):
        for j in range(weight.shape[3]):
            weight[0, 0, i, j] = \
                (1 - math.fabs(i / f - c)) * (1 - math.fabs(j / f - c))
    for c in range(1, weight.shape[0]):
        weight[c, 0, :, :] = weight[0, 0, :, :]


class IDAUp(nn.Layer):
    def __init__(self, ch_ins, ch_out, up_strides, dcn_v2=True):
        super(IDAUp, self).__init__()
        for i in range(1, len(ch_ins)):
            ch_in = ch_ins[i]
            up_s = int(up_strides[i])
            proj = nn.Sequential(
                ConvNormLayer(
                    ch_in,
                    ch_out,
                    filter_size=3,
                    stride=1,
                    use_dcn=dcn_v2,
                    bias_on=dcn_v2,
                    norm_decay=None,
                    dcn_lr_scale=1.,
                    dcn_regularizer=None),
                nn.ReLU())
            node = nn.Sequential(
                ConvNormLayer(
                    ch_out,
                    ch_out,
                    filter_size=3,
                    stride=1,
                    use_dcn=dcn_v2,
                    bias_on=dcn_v2,
                    norm_decay=None,
                    dcn_lr_scale=1.,
                    dcn_regularizer=None),
                nn.ReLU())

            param_attr = paddle.ParamAttr(initializer=KaimingUniform())
            up = nn.Conv2DTranspose(
                ch_out,
                ch_out,
                kernel_size=up_s * 2,
                weight_attr=param_attr,
                stride=up_s,
                padding=up_s // 2,
                groups=ch_out,
                bias_attr=False)
            # TODO: uncomment fill_up_weights
            #fill_up_weights(up)
            setattr(self, 'proj_' + str(i), proj)
            setattr(self, 'up_' + str(i), up)
            setattr(self, 'node_' + str(i), node)

    def forward(self, inputs, start_level, end_level):
        for i in range(start_level + 1, end_level):
            upsample = getattr(self, 'up_' + str(i - start_level))
            project = getattr(self, 'proj_' + str(i - start_level))

            inputs[i] = project(inputs[i])
            inputs[i] = upsample(inputs[i])
            node = getattr(self, 'node_' + str(i - start_level))
            inputs[i] = node(paddle.add(inputs[i], inputs[i - 1]))


class DLAUp(nn.Layer):
    def __init__(self, start_level, channels, scales, ch_in=None, dcn_v2=True):
        super(DLAUp, self).__init__()
        self.start_level = start_level
        if ch_in is None:
            ch_in = channels
        self.channels = channels
        channels = list(channels)
        scales = np.array(scales, dtype=int)
        for i in range(len(channels) - 1):
            j = -i - 2
            setattr(
                self,
                'ida_{}'.format(i),
                IDAUp(
                    ch_in[j:],
                    channels[j],
                    scales[j:] // scales[j],
                    dcn_v2=dcn_v2))
            scales[j + 1:] = scales[j]
            ch_in[j + 1:] = [channels[j] for _ in channels[j + 1:]]

    def forward(self, inputs):
        out = [inputs[-1]]  # start with 32
        for i in range(len(inputs) - self.start_level - 1):
            ida = getattr(self, 'ida_{}'.format(i))
            ida(inputs, len(inputs) - i - 2, len(inputs))
            out.insert(0, inputs[-1])
        return out


@register
@serializable
class CenterNetDLAFPN(nn.Layer):
    """
    Args:
        in_channels (list): number of input feature channels from backbone.
            [16, 32, 64, 128, 256, 512] by default, means the channels of DLA-34
        down_ratio (int): the down ratio from images to heatmap, 4 by default
        last_level (int): the last level of input feature fed into the upsamplng block
        out_channel (int): the channel of the output feature, 0 by default means
            the channel of the input feature whose down ratio is `down_ratio`
        dcn_v2 (bool): whether use the DCNv2, true by default
        
    """

    def __init__(self,
                 in_channels,
                 down_ratio=4,
                 last_level=5,
                 out_channel=0,
                 dcn_v2=True):
        super(CenterNetDLAFPN, self).__init__()
        self.first_level = int(np.log2(down_ratio))
        self.down_ratio = down_ratio
        self.last_level = last_level
        scales = [2**i for i in range(len(in_channels[self.first_level:]))]
        self.dla_up = DLAUp(
            self.first_level,
            in_channels[self.first_level:],
            scales,
            dcn_v2=dcn_v2)
        self.out_channel = out_channel
        if out_channel == 0:
            self.out_channel = in_channels[self.first_level]
        self.ida_up = IDAUp(
            in_channels[self.first_level:self.last_level],
            self.out_channel,
            [2**i for i in range(self.last_level - self.first_level)],
            dcn_v2=dcn_v2)

    @classmethod
    def from_config(cls, cfg, input_shape):
        return {'in_channels': [i.channels for i in input_shape]}

    def forward(self, body_feats):
        dla_up_feats = self.dla_up(body_feats)

        ida_up_feats = []
        for i in range(self.last_level - self.first_level):
            ida_up_feats.append(dla_up_feats[i].clone())

        self.ida_up(ida_up_feats, 0, len(ida_up_feats))

        return ida_up_feats[-1]

    @property
    def out_shape(self):
        return [ShapeSpec(channels=self.out_channel, stride=self.down_ratio)]