# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import math import paddle import paddle.nn as nn from paddle.nn.initializer import KaimingUniform from ppdet.core.workspace import register, serializable from ppdet.modeling.layers import ConvNormLayer from ..shape_spec import ShapeSpec def fill_up_weights(up): weight = up.weight f = math.ceil(weight.shape[2] / 2) c = (2 * f - 1 - f % 2) / (2. * f) for i in range(weight.shape[2]): for j in range(weight.shape[3]): weight[0, 0, i, j] = \ (1 - math.fabs(i / f - c)) * (1 - math.fabs(j / f - c)) for c in range(1, weight.shape[0]): weight[c, 0, :, :] = weight[0, 0, :, :] class IDAUp(nn.Layer): def __init__(self, ch_ins, ch_out, up_strides, dcn_v2=True): super(IDAUp, self).__init__() for i in range(1, len(ch_ins)): ch_in = ch_ins[i] up_s = int(up_strides[i]) proj = nn.Sequential( ConvNormLayer( ch_in, ch_out, filter_size=3, stride=1, use_dcn=dcn_v2, bias_on=dcn_v2, norm_decay=None, dcn_lr_scale=1., dcn_regularizer=None), nn.ReLU()) node = nn.Sequential( ConvNormLayer( ch_out, ch_out, filter_size=3, stride=1, use_dcn=dcn_v2, bias_on=dcn_v2, norm_decay=None, dcn_lr_scale=1., dcn_regularizer=None), nn.ReLU()) param_attr = paddle.ParamAttr(initializer=KaimingUniform()) up = nn.Conv2DTranspose( ch_out, ch_out, kernel_size=up_s * 2, weight_attr=param_attr, stride=up_s, padding=up_s // 2, groups=ch_out, bias_attr=False) # TODO: uncomment fill_up_weights #fill_up_weights(up) setattr(self, 'proj_' + str(i), proj) setattr(self, 'up_' + str(i), up) setattr(self, 'node_' + str(i), node) def forward(self, inputs, start_level, end_level): for i in range(start_level + 1, end_level): upsample = getattr(self, 'up_' + str(i - start_level)) project = getattr(self, 'proj_' + str(i - start_level)) inputs[i] = project(inputs[i]) inputs[i] = upsample(inputs[i]) node = getattr(self, 'node_' + str(i - start_level)) inputs[i] = node(paddle.add(inputs[i], inputs[i - 1])) class DLAUp(nn.Layer): def __init__(self, start_level, channels, scales, ch_in=None, dcn_v2=True): super(DLAUp, self).__init__() self.start_level = start_level if ch_in is None: ch_in = channels self.channels = channels channels = list(channels) scales = np.array(scales, dtype=int) for i in range(len(channels) - 1): j = -i - 2 setattr( self, 'ida_{}'.format(i), IDAUp( ch_in[j:], channels[j], scales[j:] // scales[j], dcn_v2=dcn_v2)) scales[j + 1:] = scales[j] ch_in[j + 1:] = [channels[j] for _ in channels[j + 1:]] def forward(self, inputs): out = [inputs[-1]] # start with 32 for i in range(len(inputs) - self.start_level - 1): ida = getattr(self, 'ida_{}'.format(i)) ida(inputs, len(inputs) - i - 2, len(inputs)) out.insert(0, inputs[-1]) return out @register @serializable class CenterNetDLAFPN(nn.Layer): """ Args: in_channels (list): number of input feature channels from backbone. [16, 32, 64, 128, 256, 512] by default, means the channels of DLA-34 down_ratio (int): the down ratio from images to heatmap, 4 by default last_level (int): the last level of input feature fed into the upsamplng block out_channel (int): the channel of the output feature, 0 by default means the channel of the input feature whose down ratio is `down_ratio` dcn_v2 (bool): whether use the DCNv2, true by default """ def __init__(self, in_channels, down_ratio=4, last_level=5, out_channel=0, dcn_v2=True): super(CenterNetDLAFPN, self).__init__() self.first_level = int(np.log2(down_ratio)) self.down_ratio = down_ratio self.last_level = last_level scales = [2**i for i in range(len(in_channels[self.first_level:]))] self.dla_up = DLAUp( self.first_level, in_channels[self.first_level:], scales, dcn_v2=dcn_v2) self.out_channel = out_channel if out_channel == 0: self.out_channel = in_channels[self.first_level] self.ida_up = IDAUp( in_channels[self.first_level:self.last_level], self.out_channel, [2**i for i in range(self.last_level - self.first_level)], dcn_v2=dcn_v2) @classmethod def from_config(cls, cfg, input_shape): return {'in_channels': [i.channels for i in input_shape]} def forward(self, body_feats): dla_up_feats = self.dla_up(body_feats) ida_up_feats = [] for i in range(self.last_level - self.first_level): ida_up_feats.append(dla_up_feats[i].clone()) self.ida_up(ida_up_feats, 0, len(ida_up_feats)) return ida_up_feats[-1] @property def out_shape(self): return [ShapeSpec(channels=self.out_channel, stride=self.down_ratio)]