quant.py 2.7 KB
Newer Older
B
Bai Yifan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from paddle.utils import try_import

from ppdet.core.workspace import register, serializable
from ppdet.utils.logger import setup_logger
logger = setup_logger(__name__)


@register
@serializable
class QAT(object):
    def __init__(self, quant_config, print_model):
        super(QAT, self).__init__()
        self.quant_config = quant_config
        self.print_model = print_model

    def __call__(self, model):
        paddleslim = try_import('paddleslim')
        self.quanter = paddleslim.dygraph.quant.QAT(config=self.quant_config)
        if self.print_model:
            logger.info("Model before quant:")
            logger.info(model)

        self.quanter.quantize(model)

        if self.print_model:
            logger.info("Quantized model:")
            logger.info(model)

        return model
48 49 50 51

    def save_quantized_model(self, layer, path, input_spec=None, **config):
        self.quanter.save_quantized_model(
            model=layer, path=path, input_spec=input_spec, **config)
G
Guanghua Yu 已提交
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84


@register
@serializable
class PTQ(object):
    def __init__(self,
                 ptq_config,
                 quant_batch_num=10,
                 output_dir='output_inference',
                 fuse=True,
                 fuse_list=None):
        super(PTQ, self).__init__()
        self.ptq_config = ptq_config
        self.quant_batch_num = quant_batch_num
        self.output_dir = output_dir
        self.fuse = fuse
        self.fuse_list = fuse_list

    def __call__(self, model):
        paddleslim = try_import('paddleslim')
        self.ptq = paddleslim.PTQ(**self.ptq_config)
        model.eval()
        quant_model = self.ptq.quantize(
            model, fuse=self.fuse, fuse_list=self.fuse_list)

        return quant_model

    def save_quantized_model(self,
                             quant_model,
                             quantize_model_path,
                             input_spec=None):
        self.ptq.save_quantized_model(quant_model, quantize_model_path,
                                      input_spec)