simota_head.py 22.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

G
Guanghua Yu 已提交
15 16 17
# The code is based on:
# https://github.com/open-mmlab/mmdetection/blob/master/mmdet/models/dense_heads/yolox_head.py

18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import math
from functools import partial
import numpy as np
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddle import ParamAttr
from paddle.nn.initializer import Normal, Constant

from ppdet.core.workspace import register

from ppdet.modeling.bbox_utils import distance2bbox, bbox2distance
from ppdet.data.transform.atss_assigner import bbox_overlaps

G
Guanghua Yu 已提交
36
from .gfl_head import GFLHead
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106


@register
class OTAHead(GFLHead):
    """
    OTAHead
    Args:
        conv_feat (object): Instance of 'FCOSFeat'
        num_classes (int): Number of classes
        fpn_stride (list): The stride of each FPN Layer
        prior_prob (float): Used to set the bias init for the class prediction layer
        loss_qfl (object): Instance of QualityFocalLoss.
        loss_dfl (object): Instance of DistributionFocalLoss.
        loss_bbox (object): Instance of bbox loss.
        assigner (object): Instance of label assigner.
        reg_max: Max value of integral set :math: `{0, ..., reg_max}`
                n QFL setting. Default: 16.
    """
    __inject__ = [
        'conv_feat', 'dgqp_module', 'loss_class', 'loss_dfl', 'loss_bbox',
        'assigner', 'nms'
    ]
    __shared__ = ['num_classes']

    def __init__(self,
                 conv_feat='FCOSFeat',
                 dgqp_module=None,
                 num_classes=80,
                 fpn_stride=[8, 16, 32, 64, 128],
                 prior_prob=0.01,
                 loss_class='QualityFocalLoss',
                 loss_dfl='DistributionFocalLoss',
                 loss_bbox='GIoULoss',
                 assigner='SimOTAAssigner',
                 reg_max=16,
                 feat_in_chan=256,
                 nms=None,
                 nms_pre=1000,
                 cell_offset=0):
        super(OTAHead, self).__init__(
            conv_feat=conv_feat,
            dgqp_module=dgqp_module,
            num_classes=num_classes,
            fpn_stride=fpn_stride,
            prior_prob=prior_prob,
            loss_class=loss_class,
            loss_dfl=loss_dfl,
            loss_bbox=loss_bbox,
            reg_max=reg_max,
            feat_in_chan=feat_in_chan,
            nms=nms,
            nms_pre=nms_pre,
            cell_offset=cell_offset)
        self.conv_feat = conv_feat
        self.dgqp_module = dgqp_module
        self.num_classes = num_classes
        self.fpn_stride = fpn_stride
        self.prior_prob = prior_prob
        self.loss_qfl = loss_class
        self.loss_dfl = loss_dfl
        self.loss_bbox = loss_bbox
        self.reg_max = reg_max
        self.feat_in_chan = feat_in_chan
        self.nms = nms
        self.nms_pre = nms_pre
        self.cell_offset = cell_offset
        self.use_sigmoid = self.loss_qfl.use_sigmoid

        self.assigner = assigner

G
Guanghua Yu 已提交
107 108
    def _get_target_single(self, flatten_cls_pred, flatten_center_and_stride,
                           flatten_bbox, gt_bboxes, gt_labels):
109 110
        """Compute targets for priors in a single image.
        """
G
Guanghua Yu 已提交
111 112 113
        pos_num, label, label_weight, bbox_target = self.assigner(
            F.sigmoid(flatten_cls_pred), flatten_center_and_stride,
            flatten_bbox, gt_bboxes, gt_labels)
114

G
Guanghua Yu 已提交
115
        return (pos_num, label, label_weight, bbox_target)
116 117 118 119 120 121 122 123 124 125 126

    def get_loss(self, head_outs, gt_meta):
        cls_scores, bbox_preds = head_outs
        num_level_anchors = [
            featmap.shape[-2] * featmap.shape[-1] for featmap in cls_scores
        ]
        num_imgs = gt_meta['im_id'].shape[0]
        featmap_sizes = [[featmap.shape[-2], featmap.shape[-1]]
                         for featmap in cls_scores]

        decode_bbox_preds = []
G
Guanghua Yu 已提交
127
        center_and_strides = []
128 129 130
        for featmap_size, stride, bbox_pred in zip(featmap_sizes,
                                                   self.fpn_stride, bbox_preds):

G
Guanghua Yu 已提交
131
            # center in origin image
132 133
            yy, xx = self.get_single_level_center_point(featmap_size, stride,
                                                        self.cell_offset)
G
Guanghua Yu 已提交
134 135

            center_and_stride = paddle.stack([xx, yy, stride, stride], -1).tile(
136
                [num_imgs, 1, 1])
G
Guanghua Yu 已提交
137 138 139
            center_and_strides.append(center_and_stride)
            center_in_feature = center_and_stride.reshape(
                [-1, 4])[:, :-2] / stride
140 141
            bbox_pred = bbox_pred.transpose([0, 2, 3, 1]).reshape(
                [num_imgs, -1, 4 * (self.reg_max + 1)])
G
Guanghua Yu 已提交
142 143 144 145
            pred_distances = self.distribution_project(bbox_pred)
            decode_bbox_pred_wo_stride = distance2bbox(
                center_in_feature, pred_distances).reshape([num_imgs, -1, 4])
            decode_bbox_preds.append(decode_bbox_pred_wo_stride * stride)
146 147 148 149 150 151 152 153

        flatten_cls_preds = [
            cls_pred.transpose([0, 2, 3, 1]).reshape(
                [num_imgs, -1, self.cls_out_channels])
            for cls_pred in cls_scores
        ]
        flatten_cls_preds = paddle.concat(flatten_cls_preds, axis=1)
        flatten_bboxes = paddle.concat(decode_bbox_preds, axis=1)
G
Guanghua Yu 已提交
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
        flatten_center_and_strides = paddle.concat(center_and_strides, axis=1)

        gt_boxes, gt_labels = gt_meta['gt_bbox'], gt_meta['gt_class']
        pos_num_l, label_l, label_weight_l, bbox_target_l = [], [], [], []
        for flatten_cls_pred,flatten_center_and_stride,flatten_bbox,gt_box, gt_label \
            in zip(flatten_cls_preds.detach(),flatten_center_and_strides.detach(), \
                   flatten_bboxes.detach(),gt_boxes, gt_labels):
            pos_num, label, label_weight, bbox_target = self._get_target_single(
                flatten_cls_pred, flatten_center_and_stride, flatten_bbox,
                gt_box, gt_label)
            pos_num_l.append(pos_num)
            label_l.append(label)
            label_weight_l.append(label_weight)
            bbox_target_l.append(bbox_target)

        labels = paddle.to_tensor(np.stack(label_l, axis=0))
        label_weights = paddle.to_tensor(np.stack(label_weight_l, axis=0))
        bbox_targets = paddle.to_tensor(np.stack(bbox_target_l, axis=0))

        center_and_strides_list = self._images_to_levels(
            flatten_center_and_strides, num_level_anchors)
175 176 177 178 179
        labels_list = self._images_to_levels(labels, num_level_anchors)
        label_weights_list = self._images_to_levels(label_weights,
                                                    num_level_anchors)
        bbox_targets_list = self._images_to_levels(bbox_targets,
                                                   num_level_anchors)
G
Guanghua Yu 已提交
180
        num_total_pos = sum(pos_num_l)
181
        try:
182 183 184 185 186 187 188 189 190
            cloned_num_total_pos = num_total_pos.clone()
            reduced_cloned_num_total_pos = paddle.distributed.all_reduce(
                cloned_num_total_pos)
            if reduced_cloned_num_total_pos is not None:
                num_total_pos = reduced_cloned_num_total_pos / paddle.distributed.get_world_size(
                )
            else:
                num_total_pos = cloned_num_total_pos / paddle.distributed.get_world_size(
                )
191 192 193 194
        except:
            num_total_pos = max(num_total_pos, 1)

        loss_bbox_list, loss_dfl_list, loss_qfl_list, avg_factor = [], [], [], []
G
Guanghua Yu 已提交
195 196
        for cls_score, bbox_pred, center_and_strides, labels, label_weights, bbox_targets, stride in zip(
                cls_scores, bbox_preds, center_and_strides_list, labels_list,
197
                label_weights_list, bbox_targets_list, self.fpn_stride):
G
Guanghua Yu 已提交
198
            center_and_strides = center_and_strides.reshape([-1, 4])
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
            cls_score = cls_score.transpose([0, 2, 3, 1]).reshape(
                [-1, self.cls_out_channels])
            bbox_pred = bbox_pred.transpose([0, 2, 3, 1]).reshape(
                [-1, 4 * (self.reg_max + 1)])
            bbox_targets = bbox_targets.reshape([-1, 4])
            labels = labels.reshape([-1])
            label_weights = label_weights.reshape([-1])

            bg_class_ind = self.num_classes
            pos_inds = paddle.nonzero(
                paddle.logical_and((labels >= 0), (labels < bg_class_ind)),
                as_tuple=False).squeeze(1)
            score = np.zeros(labels.shape)

            if len(pos_inds) > 0:
                pos_bbox_targets = paddle.gather(bbox_targets, pos_inds, axis=0)
                pos_bbox_pred = paddle.gather(bbox_pred, pos_inds, axis=0)
G
Guanghua Yu 已提交
216 217
                pos_centers = paddle.gather(
                    center_and_strides[:, :-2], pos_inds, axis=0) / stride
218 219 220 221 222

                weight_targets = F.sigmoid(cls_score.detach())
                weight_targets = paddle.gather(
                    weight_targets.max(axis=1, keepdim=True), pos_inds, axis=0)
                pos_bbox_pred_corners = self.distribution_project(pos_bbox_pred)
G
Guanghua Yu 已提交
223
                pos_decode_bbox_pred = distance2bbox(pos_centers,
224 225 226 227 228 229 230 231 232
                                                     pos_bbox_pred_corners)
                pos_decode_bbox_targets = pos_bbox_targets / stride
                bbox_iou = bbox_overlaps(
                    pos_decode_bbox_pred.detach().numpy(),
                    pos_decode_bbox_targets.detach().numpy(),
                    is_aligned=True)
                score[pos_inds.numpy()] = bbox_iou

                pred_corners = pos_bbox_pred.reshape([-1, self.reg_max + 1])
G
Guanghua Yu 已提交
233
                target_corners = bbox2distance(pos_centers,
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
                                               pos_decode_bbox_targets,
                                               self.reg_max).reshape([-1])
                # regression loss
                loss_bbox = paddle.sum(
                    self.loss_bbox(pos_decode_bbox_pred,
                                   pos_decode_bbox_targets) * weight_targets)

                # dfl loss
                loss_dfl = self.loss_dfl(
                    pred_corners,
                    target_corners,
                    weight=weight_targets.expand([-1, 4]).reshape([-1]),
                    avg_factor=4.0)
            else:
                loss_bbox = bbox_pred.sum() * 0
                loss_dfl = bbox_pred.sum() * 0
                weight_targets = paddle.to_tensor([0], dtype='float32')

            # qfl loss
            score = paddle.to_tensor(score)
            loss_qfl = self.loss_qfl(
                cls_score, (labels, score),
                weight=label_weights,
                avg_factor=num_total_pos)
            loss_bbox_list.append(loss_bbox)
            loss_dfl_list.append(loss_dfl)
            loss_qfl_list.append(loss_qfl)
            avg_factor.append(weight_targets.sum())

        avg_factor = sum(avg_factor)
        try:
265 266 267 268 269 270
            avg_factor_clone = avg_factor.clone()
            tmp_avg_factor = paddle.distributed.all_reduce(avg_factor_clone)
            if tmp_avg_factor is not None:
                avg_factor = tmp_avg_factor
            else:
                avg_factor = avg_factor_clone
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
            avg_factor = paddle.clip(
                avg_factor / paddle.distributed.get_world_size(), min=1)
        except:
            avg_factor = max(avg_factor.item(), 1)
        if avg_factor <= 0:
            loss_qfl = paddle.to_tensor(0, dtype='float32', stop_gradient=False)
            loss_bbox = paddle.to_tensor(
                0, dtype='float32', stop_gradient=False)
            loss_dfl = paddle.to_tensor(0, dtype='float32', stop_gradient=False)
        else:
            losses_bbox = list(map(lambda x: x / avg_factor, loss_bbox_list))
            losses_dfl = list(map(lambda x: x / avg_factor, loss_dfl_list))
            loss_qfl = sum(loss_qfl_list)
            loss_bbox = sum(losses_bbox)
            loss_dfl = sum(losses_dfl)

        loss_states = dict(
            loss_qfl=loss_qfl, loss_bbox=loss_bbox, loss_dfl=loss_dfl)

        return loss_states


@register
class OTAVFLHead(OTAHead):
    __inject__ = [
        'conv_feat', 'dgqp_module', 'loss_class', 'loss_dfl', 'loss_bbox',
        'assigner', 'nms'
    ]
    __shared__ = ['num_classes']

    def __init__(self,
                 conv_feat='FCOSFeat',
                 dgqp_module=None,
                 num_classes=80,
                 fpn_stride=[8, 16, 32, 64, 128],
                 prior_prob=0.01,
                 loss_class='VarifocalLoss',
                 loss_dfl='DistributionFocalLoss',
                 loss_bbox='GIoULoss',
                 assigner='SimOTAAssigner',
                 reg_max=16,
                 feat_in_chan=256,
                 nms=None,
                 nms_pre=1000,
                 cell_offset=0):
        super(OTAVFLHead, self).__init__(
            conv_feat=conv_feat,
            dgqp_module=dgqp_module,
            num_classes=num_classes,
            fpn_stride=fpn_stride,
            prior_prob=prior_prob,
            loss_class=loss_class,
            loss_dfl=loss_dfl,
            loss_bbox=loss_bbox,
            reg_max=reg_max,
            feat_in_chan=feat_in_chan,
            nms=nms,
            nms_pre=nms_pre,
            cell_offset=cell_offset)
        self.conv_feat = conv_feat
        self.dgqp_module = dgqp_module
        self.num_classes = num_classes
        self.fpn_stride = fpn_stride
        self.prior_prob = prior_prob
        self.loss_vfl = loss_class
        self.loss_dfl = loss_dfl
        self.loss_bbox = loss_bbox
        self.reg_max = reg_max
        self.feat_in_chan = feat_in_chan
        self.nms = nms
        self.nms_pre = nms_pre
        self.cell_offset = cell_offset
        self.use_sigmoid = self.loss_vfl.use_sigmoid

        self.assigner = assigner

    def get_loss(self, head_outs, gt_meta):
        cls_scores, bbox_preds = head_outs
        num_level_anchors = [
            featmap.shape[-2] * featmap.shape[-1] for featmap in cls_scores
        ]
        num_imgs = gt_meta['im_id'].shape[0]
        featmap_sizes = [[featmap.shape[-2], featmap.shape[-1]]
                         for featmap in cls_scores]

        decode_bbox_preds = []
G
Guanghua Yu 已提交
357
        center_and_strides = []
358 359
        for featmap_size, stride, bbox_pred in zip(featmap_sizes,
                                                   self.fpn_stride, bbox_preds):
G
Guanghua Yu 已提交
360
            # center in origin image
361 362
            yy, xx = self.get_single_level_center_point(featmap_size, stride,
                                                        self.cell_offset)
G
Guanghua Yu 已提交
363 364 365 366 367 368
            strides = paddle.full((len(xx), ), stride)
            center_and_stride = paddle.stack([xx, yy, strides, strides],
                                             -1).tile([num_imgs, 1, 1])
            center_and_strides.append(center_and_stride)
            center_in_feature = center_and_stride.reshape(
                [-1, 4])[:, :-2] / stride
369 370
            bbox_pred = bbox_pred.transpose([0, 2, 3, 1]).reshape(
                [num_imgs, -1, 4 * (self.reg_max + 1)])
G
Guanghua Yu 已提交
371 372 373 374
            pred_distances = self.distribution_project(bbox_pred)
            decode_bbox_pred_wo_stride = distance2bbox(
                center_in_feature, pred_distances).reshape([num_imgs, -1, 4])
            decode_bbox_preds.append(decode_bbox_pred_wo_stride * stride)
375 376 377 378 379 380 381 382

        flatten_cls_preds = [
            cls_pred.transpose([0, 2, 3, 1]).reshape(
                [num_imgs, -1, self.cls_out_channels])
            for cls_pred in cls_scores
        ]
        flatten_cls_preds = paddle.concat(flatten_cls_preds, axis=1)
        flatten_bboxes = paddle.concat(decode_bbox_preds, axis=1)
G
Guanghua Yu 已提交
383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
        flatten_center_and_strides = paddle.concat(center_and_strides, axis=1)

        gt_boxes, gt_labels = gt_meta['gt_bbox'], gt_meta['gt_class']
        pos_num_l, label_l, label_weight_l, bbox_target_l = [], [], [], []
        for flatten_cls_pred, flatten_center_and_stride, flatten_bbox,gt_box,gt_label \
                in zip(flatten_cls_preds.detach(), flatten_center_and_strides.detach(), \
                       flatten_bboxes.detach(),gt_boxes,gt_labels):
            pos_num, label, label_weight, bbox_target = self._get_target_single(
                flatten_cls_pred, flatten_center_and_stride, flatten_bbox,
                gt_box, gt_label)
            pos_num_l.append(pos_num)
            label_l.append(label)
            label_weight_l.append(label_weight)
            bbox_target_l.append(bbox_target)

        labels = paddle.to_tensor(np.stack(label_l, axis=0))
        label_weights = paddle.to_tensor(np.stack(label_weight_l, axis=0))
        bbox_targets = paddle.to_tensor(np.stack(bbox_target_l, axis=0))

        center_and_strides_list = self._images_to_levels(
            flatten_center_and_strides, num_level_anchors)
404 405 406 407 408
        labels_list = self._images_to_levels(labels, num_level_anchors)
        label_weights_list = self._images_to_levels(label_weights,
                                                    num_level_anchors)
        bbox_targets_list = self._images_to_levels(bbox_targets,
                                                   num_level_anchors)
G
Guanghua Yu 已提交
409
        num_total_pos = sum(pos_num_l)
410
        try:
411 412 413 414 415 416 417 418 419
            cloned_num_total_pos = num_total_pos.clone()
            reduced_cloned_num_total_pos = paddle.distributed.all_reduce(
                cloned_num_total_pos)
            if reduced_cloned_num_total_pos is not None:
                num_total_pos = reduced_cloned_num_total_pos / paddle.distributed.get_world_size(
                )
            else:
                num_total_pos = cloned_num_total_pos / paddle.distributed.get_world_size(
                )
420 421 422 423
        except:
            num_total_pos = max(num_total_pos, 1)

        loss_bbox_list, loss_dfl_list, loss_vfl_list, avg_factor = [], [], [], []
G
Guanghua Yu 已提交
424 425
        for cls_score, bbox_pred, center_and_strides, labels, label_weights, bbox_targets, stride in zip(
                cls_scores, bbox_preds, center_and_strides_list, labels_list,
426
                label_weights_list, bbox_targets_list, self.fpn_stride):
G
Guanghua Yu 已提交
427
            center_and_strides = center_and_strides.reshape([-1, 4])
428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
            cls_score = cls_score.transpose([0, 2, 3, 1]).reshape(
                [-1, self.cls_out_channels])
            bbox_pred = bbox_pred.transpose([0, 2, 3, 1]).reshape(
                [-1, 4 * (self.reg_max + 1)])
            bbox_targets = bbox_targets.reshape([-1, 4])
            labels = labels.reshape([-1])

            bg_class_ind = self.num_classes
            pos_inds = paddle.nonzero(
                paddle.logical_and((labels >= 0), (labels < bg_class_ind)),
                as_tuple=False).squeeze(1)
            # vfl
            vfl_score = np.zeros(cls_score.shape)

            if len(pos_inds) > 0:
                pos_bbox_targets = paddle.gather(bbox_targets, pos_inds, axis=0)
                pos_bbox_pred = paddle.gather(bbox_pred, pos_inds, axis=0)
G
Guanghua Yu 已提交
445 446
                pos_centers = paddle.gather(
                    center_and_strides[:, :-2], pos_inds, axis=0) / stride
447 448 449 450 451

                weight_targets = F.sigmoid(cls_score.detach())
                weight_targets = paddle.gather(
                    weight_targets.max(axis=1, keepdim=True), pos_inds, axis=0)
                pos_bbox_pred_corners = self.distribution_project(pos_bbox_pred)
G
Guanghua Yu 已提交
452
                pos_decode_bbox_pred = distance2bbox(pos_centers,
453 454 455 456 457 458 459 460 461 462 463 464
                                                     pos_bbox_pred_corners)
                pos_decode_bbox_targets = pos_bbox_targets / stride
                bbox_iou = bbox_overlaps(
                    pos_decode_bbox_pred.detach().numpy(),
                    pos_decode_bbox_targets.detach().numpy(),
                    is_aligned=True)

                # vfl
                pos_labels = paddle.gather(labels, pos_inds, axis=0)
                vfl_score[pos_inds.numpy(), pos_labels] = bbox_iou

                pred_corners = pos_bbox_pred.reshape([-1, self.reg_max + 1])
G
Guanghua Yu 已提交
465
                target_corners = bbox2distance(pos_centers,
466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
                                               pos_decode_bbox_targets,
                                               self.reg_max).reshape([-1])
                # regression loss
                loss_bbox = paddle.sum(
                    self.loss_bbox(pos_decode_bbox_pred,
                                   pos_decode_bbox_targets) * weight_targets)

                # dfl loss
                loss_dfl = self.loss_dfl(
                    pred_corners,
                    target_corners,
                    weight=weight_targets.expand([-1, 4]).reshape([-1]),
                    avg_factor=4.0)
            else:
                loss_bbox = bbox_pred.sum() * 0
                loss_dfl = bbox_pred.sum() * 0
                weight_targets = paddle.to_tensor([0], dtype='float32')

            # vfl loss
            num_pos_avg_per_gpu = num_total_pos
            vfl_score = paddle.to_tensor(vfl_score)
            loss_vfl = self.loss_vfl(
                cls_score, vfl_score, avg_factor=num_pos_avg_per_gpu)

            loss_bbox_list.append(loss_bbox)
            loss_dfl_list.append(loss_dfl)
            loss_vfl_list.append(loss_vfl)
            avg_factor.append(weight_targets.sum())

        avg_factor = sum(avg_factor)
        try:
497 498 499 500 501 502
            avg_factor_clone = avg_factor.clone()
            tmp_avg_factor = paddle.distributed.all_reduce(avg_factor_clone)
            if tmp_avg_factor is not None:
                avg_factor = tmp_avg_factor
            else:
                avg_factor = avg_factor_clone
503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
            avg_factor = paddle.clip(
                avg_factor / paddle.distributed.get_world_size(), min=1)
        except:
            avg_factor = max(avg_factor.item(), 1)
        if avg_factor <= 0:
            loss_vfl = paddle.to_tensor(0, dtype='float32', stop_gradient=False)
            loss_bbox = paddle.to_tensor(
                0, dtype='float32', stop_gradient=False)
            loss_dfl = paddle.to_tensor(0, dtype='float32', stop_gradient=False)
        else:
            losses_bbox = list(map(lambda x: x / avg_factor, loss_bbox_list))
            losses_dfl = list(map(lambda x: x / avg_factor, loss_dfl_list))
            loss_vfl = sum(loss_vfl_list)
            loss_bbox = sum(losses_bbox)
            loss_dfl = sum(losses_dfl)

        loss_states = dict(
            loss_vfl=loss_vfl, loss_bbox=loss_bbox, loss_dfl=loss_dfl)

        return loss_states