mnist.py 4.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
import argparse
import time
import cProfile
Y
yi.wu 已提交
23
import os
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68

import paddle
import paddle.fluid as fluid
import paddle.fluid.profiler as profiler

SEED = 1
DTYPE = "float32"

# random seed must set before configuring the network.
# fluid.default_startup_program().random_seed = SEED


def cnn_model(data):
    conv_pool_1 = fluid.nets.simple_img_conv_pool(
        input=data,
        filter_size=5,
        num_filters=20,
        pool_size=2,
        pool_stride=2,
        act="relu")
    conv_pool_2 = fluid.nets.simple_img_conv_pool(
        input=conv_pool_1,
        filter_size=5,
        num_filters=50,
        pool_size=2,
        pool_stride=2,
        act="relu")

    # TODO(dzhwinter) : refine the initializer and random seed settting
    SIZE = 10
    input_shape = conv_pool_2.shape
    param_shape = [reduce(lambda a, b: a * b, input_shape[1:], 1)] + [SIZE]
    scale = (2.0 / (param_shape[0]**2 * SIZE))**0.5

    predict = fluid.layers.fc(
        input=conv_pool_2,
        size=SIZE,
        act="softmax",
        param_attr=fluid.param_attr.ParamAttr(
            initializer=fluid.initializer.NormalInitializer(
                loc=0.0, scale=scale)))
    return predict


def get_model(args):
Y
yi.wu 已提交
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
    if args.use_reader_op:
        filelist = [
            os.path.join(args.data_path, f) for f in os.listdir(args.data_path)
        ]
        data_file = fluid.layers.open_files(
            filenames=filelist,
            shapes=[[-1, 1, 28, 28], (-1, 1)],
            lod_levels=[0, 0],
            dtypes=["float32", "int64"],
            thread_num=args.gpus)
        data_file = fluid.layers.double_buffer(
            fluid.layers.batch(
                data_file, batch_size=args.batch_size))
        images, label = fluid.layers.read_file(data_file)
    else:
        images = fluid.layers.data(name='pixel', shape=[1, 28, 28], dtype=DTYPE)
        label = fluid.layers.data(name='label', shape=[1], dtype='int64')
86

87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
    if args.device == 'CPU' and args.cpus > 1:
        places = fluid.layers.get_places(args.cpus)
        pd = fluid.layers.ParallelDo(places)
        with pd.do():
            predict = cnn_model(pd.read_input(images))
            label = pd.read_input(label)
            cost = fluid.layers.cross_entropy(input=predict, label=label)
            avg_cost = fluid.layers.mean(x=cost)
            batch_acc = fluid.layers.accuracy(input=predict, label=label)

            pd.write_output(avg_cost)
            pd.write_output(batch_acc)

        avg_cost, batch_acc = pd()
        avg_cost = fluid.layers.mean(avg_cost)
        batch_acc = fluid.layers.mean(batch_acc)
    else:
        # Train program
        predict = cnn_model(images)
        cost = fluid.layers.cross_entropy(input=predict, label=label)
        avg_cost = fluid.layers.mean(x=cost)

        # Evaluator
        batch_acc = fluid.layers.accuracy(input=predict, label=label)
111 112 113 114 115 116 117 118 119 120

    # inference program
    inference_program = fluid.default_main_program().clone()

    # Optimization
    opt = fluid.optimizer.AdamOptimizer(
        learning_rate=0.001, beta1=0.9, beta2=0.999)

    # Reader
    train_reader = paddle.batch(
Y
yi.wu 已提交
121
        paddle.dataset.mnist.train(), batch_size=args.batch_size * args.gpus)
122 123 124
    test_reader = paddle.batch(
        paddle.dataset.mnist.test(), batch_size=args.batch_size)
    return avg_cost, inference_program, opt, train_reader, test_reader, batch_acc