README_en.md 5.6 KB
Newer Older
Y
Yang Zhang 已提交
1 2 3 4 5 6 7 8 9
English | [简体中文](README.md)

# Mobile Model Zoo


## Models

This directory contains models optimized for mobile applications, at present the following models included:

10 11 12 13 14 15 16 17
| Backbone                 | Architecture              | Input | Image/gpu <sup>1</sup> | Lr schd       | Box AP | Download | PaddleLite Model Download |
| :----------------------- | :------------------------ | :---: | :--------------------: | :------------ | :----: | :------- | :------------------------ |
| MobileNetV3 Small        | SSDLite                   | 320   | 64                     | 400K (cosine) | 16.6   | [Link](https://paddlemodels.bj.bcebos.com/object_detection/mobile_models/ssdlite_mobilenet_v3_small.tar) | [Link](https://paddlemodels.bj.bcebos.com/object_detection/mobile_models/lite/ssdlite_mobilenet_v3_small.tar) |
| MobileNetV3 Large        | SSDLite                   | 320   | 64                     | 400K (cosine) | 22.8   | [Link](https://paddlemodels.bj.bcebos.com/object_detection/mobile_models/ssdlite_mobilenet_v3_large.tar) | [Link](https://paddlemodels.bj.bcebos.com/object_detection/mobile_models/lite/ssdlite_mobilenet_v3_large.tar) |
| MobileNetV3 Large w/ FPN | Cascade RCNN              | 320   | 2                      | 500k (cosine) | 25.0   | [Link](https://paddlemodels.bj.bcebos.com/object_detection/mobile_models/cascade_rcnn_mobilenetv3_fpn_320.tar) | [Link](https://paddlemodels.bj.bcebos.com/object_detection/mobile_models/lite/cascade_rcnn_mobilenetv3_fpn_320.tar) |
| MobileNetV3 Large w/ FPN | Cascade RCNN              | 640   | 2                      | 500k (cosine) | 30.2   | [Link](https://paddlemodels.bj.bcebos.com/object_detection/mobile_models/cascade_rcnn_mobilenetv3_fpn_640.tar) | [Link](https://paddlemodels.bj.bcebos.com/object_detection/mobile_models/lite/cascade_rcnn_mobilenetv3_fpn_640.tar) |
| MobileNetV3 Large        | YOLOv3                    | 320   | 8                      | 500K          | 27.1   | [Link](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v3.pdparams) | [Link](https://paddlemodels.bj.bcebos.com/object_detection/mobile_models/lite/yolov3_mobilenet_v3.tar) |
| MobileNetV3 Large        | YOLOv3 Prune <sup>2</sup> | 320   | 8                      | -             | 24.6   | [Link](https://paddlemodels.bj.bcebos.com/object_detection/mobile_models/yolov3_mobilenet_v3_prune75875_FPGM_distillby_r34.pdparams) | [Link](https://paddlemodels.bj.bcebos.com/object_detection/mobile_models/lite/yolov3_mobilenet_v3_prune86_FPGM_320.tar) |
Y
Yang Zhang 已提交
18 19 20 21

**Notes**:

-   <a name="gpu">[1]</a> All models are trained on 8 GPUs.
22
-   <a name="prune">[2]</a> See the note section on how YOLO head is pruned
Y
Yang Zhang 已提交
23 24 25 26 27 28 29 30 31 32 33


## Benchmarks Results

-   Models are benched on following chipsets with [Paddle-Lite](https://github.com/PaddlePaddle/Paddle-Lite) 2.6 (to be released)
    -   Qualcomm Snapdragon 625
    -   Qualcomm Snapdragon 835
    -   Qualcomm Snapdragon 845
    -   Qualcomm Snapdragon 855
    -   HiSilicon Kirin 970
    -   HiSilicon Kirin 980
34

Y
Yang Zhang 已提交
35 36 37 38 39 40 41 42 43 44
-   With 1 CPU thread (latency numbers are in ms)

    |                  | SD625   | SD835   | SD845   | SD855   | Kirin 970 | Kirin 980 |
    |------------------|---------|---------|---------|---------|-----------|-----------|
    | SSDLite Large    | 289.071 | 134.408 | 91.933  | 48.2206 | 144.914   | 55.1186   |
    | SSDLite Small    | 122.932 | 57.1914 | 41.003  | 22.0694 | 61.5468   | 25.2106   |
    | YOLOv3 baseline  | 1082.5  | 435.77  | 317.189 | 155.948 | 536.987   | 178.999   |
    | YOLOv3 prune     | 253.98  | 131.279 | 89.4124 | 48.2856 | 122.732   | 55.8626   |
    | Cascade RCNN 320 | 286.526 | 125.635 | 87.404  | 46.184  | 149.179   | 52.9994   |
    | Cascade RCNN 640 | 1115.66 | 495.926 | 351.361 | 189.722 | 573.558   | 207.917   |
45

Y
Yang Zhang 已提交
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
-   With 4 CPU threads (latency numbers are in ms)

    |                  | SD625   | SD835   | SD845   | SD855   | Kirin 970 | Kirin 980 |
    |------------------|---------|---------|---------|---------|-----------|-----------|
    | SSDLite Large    | 107.535 | 51.1382 | 34.6392 | 20.4978 | 50.5598   | 24.5318   |
    | SSDLite Small    | 51.5704 | 24.5156 | 18.5486 | 11.4218 | 24.9946   | 16.7158   |
    | YOLOv3 baseline  | 413.486 | 184.248 | 133.624 | 75.7354 | 202.263   | 126.435   |
    | YOLOv3 prune     | 98.5472 | 53.6228 | 34.4306 | 21.3112 | 44.0722   | 31.201    |
    | Cascade RCNN 320 | 131.515 | 59.6026 | 39.4338 | 23.5802 | 58.5046   | 36.9486   |
    | Cascade RCNN 640 | 473.083 | 224.543 | 156.205 | 100.686 | 231.108   | 138.391   |


## Notes on YOLOv3 pruning

We pruned the YOLO-head and distill the pruned model with YOLOv3-ResNet34 as the teacher, which has a higher mAP on COCO (31.4 with 320\*320 input).

The following configurations can be used for pruning:

-   Prune with fixed ratio, overall prune ratios is 86%

    ```shell
    --pruned_params="yolo_block.0.0.0.conv.weights,yolo_block.0.0.1.conv.weights,yolo_block.0.1.0.conv.weights,yolo_block.0.1.1.conv.weights,yolo_block.0.2.conv.weights,yolo_block.0.tip.conv.weights,yolo_block.1.0.0.conv.weights,yolo_block.1.0.1.conv.weights,yolo_block.1.1.0.conv.weights,yolo_block.1.1.1.conv.weights,yolo_block.1.2.conv.weights,yolo_block.1.tip.conv.weights,yolo_block.2.0.0.conv.weights,yolo_block.2.0.1.conv.weights,yolo_block.2.1.0.conv.weights,yolo_block.2.1.1.conv.weights,yolo_block.2.2.conv.weights,yolo_block.2.tip.conv.weights" \
    --pruned_ratios="0.75,0.75,0.75,0.75,0.75,0.75,0.75,0.75,0.75,0.75,0.75,0.75,0.875,0.875,0.875,0.875,0.875,0.875"
    ```
-   Prune filters using [FPGM](https://arxiv.org/abs/1811.00250) algorithm:

    ```shell
    --prune_criterion=geometry_median
    ```


## Upcoming

-   [ ] More models configurations
-   [ ] Quantized models