Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
ba9646fd
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
ba9646fd
编写于
5月 14, 2020
作者:
Y
Yang Zhang
提交者:
GitHub
5月 14, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add cn doc for mobile (#664)
上级
f5d79800
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
113 addition
and
29 deletion
+113
-29
configs/mobile/README.md
configs/mobile/README.md
+31
-29
configs/mobile/README_en.md
configs/mobile/README_en.md
+82
-0
未找到文件。
configs/mobile/README.md
浏览文件 @
ba9646fd
# Mobile Model Zoo
[
English
](
README_en.md
)
| 简体中文
# 移动端模型库
## Models
This directory contains models optimized for mobile applications, at present the following models included:
## 模型
| Backbone | Architecture | Input | Image/gpu
<sup>
1
</sup>
| Lr schd | Box AP | Download
<sup>
2
</sup>
|
PaddleDetection目前提供一系列针对移动应用进行优化的模型,主要支持以下结构:
| 骨干网络 | 结构 | 输入大小 | 图片/gpu
<sup>
1
</sup>
| 学习率策略 | Box AP | 下载
<sup>
2
</sup>
|
|--------------------------|---------------------------|-------|------------------------|---------------|--------|-----------------------|
| MobileNetV3 Small | SSDLite | 320 | 64 | 400K (cosine) | 16.6 |
[
Link
](
https://paddlemodels.bj.bcebos.com/object_detection/ssdlite_mobilenet_v3_small.tar.gz
)
|
| MobileNetV3 Large | SSDLite | 320 | 64 | 400K (cosine) | 22.8 |
[
Link
](
https://paddlemodels.bj.bcebos.com/object_detection/ssdlite_mobilenet_v3_large.tar.gz
)
|
| MobileNetV3 Large w/ FPN | Cascade RCNN | 320 | 2 | 500k (cosine) | 25.0 |
[
Link
](
https://paddlemodels.bj.bcebos.com/object_detection/cascade_rcnn_mobilenetv3_fpn_320.tar.gz
)
|
| MobileNetV3 Large w/ FPN | Cascade RCNN | 640 | 2 | 500k (cosine) | 30.2 |
[
Link
](
https://paddlemodels.bj.bcebos.com/object_detection/cascade_rcnn_mobilenetv3_fpn_640.tar.gz
)
|
| MobileNetV3 Large | YOLOv3 | 320 | 8 | 500K | 27.1 |
[
Link
](
https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v3.tar.gz
)
|
| MobileNetV3 Large | YOLOv3 Prune
<sup>
3
</sup>
| 320 | 8 | - | 24.6 |
[
Link
](
https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v3_prune86_FPGM_320.tar.gz
)
|
| MobileNetV3 Small | SSDLite | 320 | 64 | 400K (cosine) | 16.6 |
[
链接
](
https://paddlemodels.bj.bcebos.com/object_detection/ssdlite_mobilenet_v3_small.tar.gz
)
|
| MobileNetV3 Large | SSDLite | 320 | 64 | 400K (cosine) | 22.8 |
[
链接
](
https://paddlemodels.bj.bcebos.com/object_detection/ssdlite_mobilenet_v3_large.tar.gz
)
|
| MobileNetV3 Large w/ FPN | Cascade RCNN | 320 | 2 | 500k (cosine) | 25.0 |
[
链接
](
https://paddlemodels.bj.bcebos.com/object_detection/cascade_rcnn_mobilenetv3_fpn_320.tar.gz
)
|
| MobileNetV3 Large w/ FPN | Cascade RCNN | 640 | 2 | 500k (cosine) | 30.2 |
[
链接
](
https://paddlemodels.bj.bcebos.com/object_detection/cascade_rcnn_mobilenetv3_fpn_640.tar.gz
)
|
| MobileNetV3 Large | YOLOv3 | 320 | 8 | 500K | 27.1 |
[
链接
](
https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v3.tar.gz
)
|
| MobileNetV3 Large | YOLOv3 Prune
<sup>
3
</sup>
| 320 | 8 | - | 24.6 |
[
链接
](
https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v3_prune86_FPGM_320.tar.gz
)
|
**
Notes
**
:
**
注意
**
:
-
<a
name=
"gpu"
>
[1]
</a>
All models are trained on 8 GPUs
.
-
<a
name=
"tarball"
>
[2]
</a>
Each tarball contains the following files
-
model weight file
(
`.pdparams`
or
`.tar`
)
-
inference model
files
(
`__model__`
and
`__params__`
)
-
Paddle-Lite
model file
(
`.nb`
)
-
<a
name=
"prune"
>
[3]
</a>
See the note section on how YOLO head is pruned
-
<a
name=
"gpu"
>
[1]
</a>
模型统一使用8卡训练
.
-
<a
name=
"tarball"
>
[2]
</a>
压缩包包括下列文件
-
模型权重文件
(
`.pdparams`
or
`.tar`
)
-
inference model
文件
(
`__model__`
and
`__params__`
)
-
Paddle-Lite
模型文件
(
`.nb`
)
-
<a
name=
"prune"
>
[3]
</a>
参考下面关于YOLO剪裁的说明
##
Benchmarks Results
##
评测结果
-
Models are benched on following chipsets with
[
Paddle-Lite
](
https://github.com/PaddlePaddle/Paddle-Lite
)
2.6 (to be released)
-
模型使用
[
Paddle-Lite
](
https://github.com/PaddlePaddle/Paddle-Lite
)
2.6 (即将发布) 在下列平台上进行了测试
-
Qualcomm Snapdragon 625
-
Qualcomm Snapdragon 835
-
Qualcomm Snapdragon 845
-
Qualcomm Snapdragon 855
-
HiSilicon Kirin 970
-
HiSilicon Kirin 980
-
With 1 CPU thread (latency numbers are in
ms)
-
单CPU线程 (单位:
ms)
| | SD625 | SD835 | SD845 | SD855 | Kirin 970 | Kirin 980 |
|------------------|---------|---------|---------|---------|-----------|-----------|
...
...
@@ -43,7 +45,7 @@ This directory contains models optimized for mobile applications, at present the
| YOLOv3 prune | 253.98 | 131.279 | 89.4124 | 48.2856 | 122.732 | 55.8626 |
| Cascade RCNN 320 | 286.526 | 125.635 | 87.404 | 46.184 | 149.179 | 52.9994 |
| Cascade RCNN 640 | 1115.66 | 495.926 | 351.361 | 189.722 | 573.558 | 207.917 |
-
With 4 CPU threads (latency numbers are in
ms)
-
4 CPU线程 (单位:
ms)
| | SD625 | SD835 | SD845 | SD855 | Kirin 970 | Kirin 980 |
|------------------|---------|---------|---------|---------|-----------|-----------|
...
...
@@ -55,26 +57,26 @@ This directory contains models optimized for mobile applications, at present the
| Cascade RCNN 640 | 473.083 | 224.543 | 156.205 | 100.686 | 231.108 | 138.391 |
##
Notes on YOLOv3 pruning
##
YOLOv3剪裁说明
We pruned the YOLO-head and distill the pruned model with YOLOv3-ResNet34 as the teacher, which has a higher mAP on COCO (31.4 with 320
\*
320 input
).
首先对YOLO检测头进行剪裁,然后再使用 YOLOv3-ResNet34 作为teacher网络对剪裁后的模型进行蒸馏, teacher网络在COCO的mAP为31.4 (输入大小320
\*
320
).
The following configurations can be used for pruning
:
可以使用如下两种方式进行剪裁
:
-
Prune with fixed ratio, overall prune ratios is
86%
-
固定比例剪裁, 整体剪裁率是
86%
```shell
--pruned_params="yolo_block.0.0.0.conv.weights,yolo_block.0.0.1.conv.weights,yolo_block.0.1.0.conv.weights,yolo_block.0.1.1.conv.weights,yolo_block.0.2.conv.weights,yolo_block.0.tip.conv.weights,yolo_block.1.0.0.conv.weights,yolo_block.1.0.1.conv.weights,yolo_block.1.1.0.conv.weights,yolo_block.1.1.1.conv.weights,yolo_block.1.2.conv.weights,yolo_block.1.tip.conv.weights,yolo_block.2.0.0.conv.weights,yolo_block.2.0.1.conv.weights,yolo_block.2.1.0.conv.weights,yolo_block.2.1.1.conv.weights,yolo_block.2.2.conv.weights,yolo_block.2.tip.conv.weights" \
--pruned_ratios="0.75,0.75,0.75,0.75,0.75,0.75,0.75,0.75,0.75,0.75,0.75,0.75,0.875,0.875,0.875,0.875,0.875,0.875"
```
-
Prune filters using
[
FPGM
](
https://arxiv.org/abs/1811.00250
)
algorithm
:
-
使用
[
FPGM
](
https://arxiv.org/abs/1811.00250
)
算法剪裁
:
```shell
--prune_criterion=geometry_median
```
##
Upcoming
##
敬请关注后续发布
-
[ ]
More models configurations
-
[ ]
Quantized models
-
[ ]
更多模型
-
[ ]
量化模型
configs/mobile/README_en.md
0 → 100755
浏览文件 @
ba9646fd
English |
[
简体中文
](
README.md
)
# Mobile Model Zoo
## Models
This directory contains models optimized for mobile applications, at present the following models included:
| Backbone | Architecture | Input | Image/gpu
<sup>
1
</sup>
| Lr schd | Box AP | Download
<sup>
2
</sup>
|
|--------------------------|---------------------------|-------|------------------------|---------------|--------|-----------------------|
| MobileNetV3 Small | SSDLite | 320 | 64 | 400K (cosine) | 16.6 |
[
Link
](
https://paddlemodels.bj.bcebos.com/object_detection/ssdlite_mobilenet_v3_small.tar.gz
)
|
| MobileNetV3 Large | SSDLite | 320 | 64 | 400K (cosine) | 22.8 |
[
Link
](
https://paddlemodels.bj.bcebos.com/object_detection/ssdlite_mobilenet_v3_large.tar.gz
)
|
| MobileNetV3 Large w/ FPN | Cascade RCNN | 320 | 2 | 500k (cosine) | 25.0 |
[
Link
](
https://paddlemodels.bj.bcebos.com/object_detection/cascade_rcnn_mobilenetv3_fpn_320.tar.gz
)
|
| MobileNetV3 Large w/ FPN | Cascade RCNN | 640 | 2 | 500k (cosine) | 30.2 |
[
Link
](
https://paddlemodels.bj.bcebos.com/object_detection/cascade_rcnn_mobilenetv3_fpn_640.tar.gz
)
|
| MobileNetV3 Large | YOLOv3 | 320 | 8 | 500K | 27.1 |
[
Link
](
https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v3.tar.gz
)
|
| MobileNetV3 Large | YOLOv3 Prune
<sup>
3
</sup>
| 320 | 8 | - | 24.6 |
[
Link
](
https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v3_prune86_FPGM_320.tar.gz
)
|
**Notes**
:
-
<a
name=
"gpu"
>
[1]
</a>
All models are trained on 8 GPUs.
-
<a
name=
"tarball"
>
[2]
</a>
Each tarball contains the following files
-
model weight file (
`.pdparams`
or
`.tar`
)
-
inference model files (
`__model__`
and
`__params__`
)
-
Paddle-Lite model file (
`.nb`
)
-
<a
name=
"prune"
>
[3]
</a>
See the note section on how YOLO head is pruned
## Benchmarks Results
-
Models are benched on following chipsets with
[
Paddle-Lite
](
https://github.com/PaddlePaddle/Paddle-Lite
)
2.6 (to be released)
-
Qualcomm Snapdragon 625
-
Qualcomm Snapdragon 835
-
Qualcomm Snapdragon 845
-
Qualcomm Snapdragon 855
-
HiSilicon Kirin 970
-
HiSilicon Kirin 980
-
With 1 CPU thread (latency numbers are in ms)
| | SD625 | SD835 | SD845 | SD855 | Kirin 970 | Kirin 980 |
|------------------|---------|---------|---------|---------|-----------|-----------|
| SSDLite Large | 289.071 | 134.408 | 91.933 | 48.2206 | 144.914 | 55.1186 |
| SSDLite Small | 122.932 | 57.1914 | 41.003 | 22.0694 | 61.5468 | 25.2106 |
| YOLOv3 baseline | 1082.5 | 435.77 | 317.189 | 155.948 | 536.987 | 178.999 |
| YOLOv3 prune | 253.98 | 131.279 | 89.4124 | 48.2856 | 122.732 | 55.8626 |
| Cascade RCNN 320 | 286.526 | 125.635 | 87.404 | 46.184 | 149.179 | 52.9994 |
| Cascade RCNN 640 | 1115.66 | 495.926 | 351.361 | 189.722 | 573.558 | 207.917 |
-
With 4 CPU threads (latency numbers are in ms)
| | SD625 | SD835 | SD845 | SD855 | Kirin 970 | Kirin 980 |
|------------------|---------|---------|---------|---------|-----------|-----------|
| SSDLite Large | 107.535 | 51.1382 | 34.6392 | 20.4978 | 50.5598 | 24.5318 |
| SSDLite Small | 51.5704 | 24.5156 | 18.5486 | 11.4218 | 24.9946 | 16.7158 |
| YOLOv3 baseline | 413.486 | 184.248 | 133.624 | 75.7354 | 202.263 | 126.435 |
| YOLOv3 prune | 98.5472 | 53.6228 | 34.4306 | 21.3112 | 44.0722 | 31.201 |
| Cascade RCNN 320 | 131.515 | 59.6026 | 39.4338 | 23.5802 | 58.5046 | 36.9486 |
| Cascade RCNN 640 | 473.083 | 224.543 | 156.205 | 100.686 | 231.108 | 138.391 |
## Notes on YOLOv3 pruning
We pruned the YOLO-head and distill the pruned model with YOLOv3-ResNet34 as the teacher, which has a higher mAP on COCO (31.4 with 320
\*
320 input).
The following configurations can be used for pruning:
-
Prune with fixed ratio, overall prune ratios is 86%
```shell
--pruned_params="yolo_block.0.0.0.conv.weights,yolo_block.0.0.1.conv.weights,yolo_block.0.1.0.conv.weights,yolo_block.0.1.1.conv.weights,yolo_block.0.2.conv.weights,yolo_block.0.tip.conv.weights,yolo_block.1.0.0.conv.weights,yolo_block.1.0.1.conv.weights,yolo_block.1.1.0.conv.weights,yolo_block.1.1.1.conv.weights,yolo_block.1.2.conv.weights,yolo_block.1.tip.conv.weights,yolo_block.2.0.0.conv.weights,yolo_block.2.0.1.conv.weights,yolo_block.2.1.0.conv.weights,yolo_block.2.1.1.conv.weights,yolo_block.2.2.conv.weights,yolo_block.2.tip.conv.weights" \
--pruned_ratios="0.75,0.75,0.75,0.75,0.75,0.75,0.75,0.75,0.75,0.75,0.75,0.75,0.875,0.875,0.875,0.875,0.875,0.875"
```
-
Prune filters using
[
FPGM
](
https://arxiv.org/abs/1811.00250
)
algorithm:
```shell
--prune_criterion=geometry_median
```
## Upcoming
-
[ ] More models configurations
-
[ ] Quantized models
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录