tinypose_256x192.yml 3.1 KB
Newer Older
J
JYChen 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
use_gpu: true
log_iter: 5
save_dir: output
snapshot_epoch: 10
weights: output/tinypose_256x192/model_final
epoch: 420
num_joints: &num_joints 17
pixel_std: &pixel_std 200
metric: KeyPointTopDownCOCOEval
num_classes: 1
train_height: &train_height 256
train_width: &train_width 192
trainsize: &trainsize [*train_width, *train_height]
hmsize: &hmsize [48, 64]
flip_perm: &flip_perm [[1, 2], [3, 4], [5, 6], [7, 8], [9, 10], [11, 12], [13, 14], [15, 16]]


#####model
architecture: TopDownHRNet

TopDownHRNet:
  backbone: LiteHRNet
  post_process: HRNetPostProcess
  flip_perm: *flip_perm
  num_joints: *num_joints
  width: &width 40
  loss: KeyPointMSELoss
  use_dark: true

LiteHRNet:
  network_type: wider_naive
  freeze_at: -1
  freeze_norm: false
  return_idx: [0]

KeyPointMSELoss:
  use_target_weight: true
  loss_scale: 1.0

#####optimizer
LearningRate:
  base_lr: 0.002
  schedulers:
  - !PiecewiseDecay
    milestones: [380, 410]
    gamma: 0.1
  - !LinearWarmup
    start_factor: 0.001
    steps: 500

OptimizerBuilder:
  optimizer:
    type: Adam
  regularizer:
    factor: 0.0
    type: L2


#####data
TrainDataset:
  !KeypointTopDownCocoDataset
    image_dir: ""
    anno_path: aic_coco_train_cocoformat.json
    dataset_dir: dataset
    num_joints: *num_joints
    trainsize: *trainsize
    pixel_std: *pixel_std
    use_gt_bbox: True


EvalDataset:
  !KeypointTopDownCocoDataset
    image_dir: val2017
    anno_path: annotations/person_keypoints_val2017.json
    dataset_dir: dataset/coco
    num_joints: *num_joints
    trainsize: *trainsize
    pixel_std: *pixel_std
    use_gt_bbox: True
80
    image_thre: 0.5
J
JYChen 已提交
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146

TestDataset:
  !ImageFolder
    anno_path: dataset/coco/keypoint_imagelist.txt

worker_num: 2
global_mean: &global_mean [0.485, 0.456, 0.406]
global_std: &global_std [0.229, 0.224, 0.225]
TrainReader:
  sample_transforms:
    - RandomFlipHalfBodyTransform:
        scale: 0.25
        rot: 30
        num_joints_half_body: 8
        prob_half_body: 0.3
        pixel_std: *pixel_std
        trainsize: *trainsize
        upper_body_ids: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
        flip_pairs: *flip_perm
    - AugmentationbyInformantionDropping:
        prob_cutout: 0.5
        offset_factor: 0.05
        num_patch: 1
        trainsize: *trainsize
    - TopDownAffine:
        trainsize: *trainsize
        use_udp: true
    - ToHeatmapsTopDown_DARK:
        hmsize: *hmsize
        sigma: 2
  batch_transforms:
    - NormalizeImage:
        mean: *global_mean
        std: *global_std
        is_scale: true
    - Permute: {}
  batch_size: 128
  shuffle: true
  drop_last: false

EvalReader:
  sample_transforms:
    - TopDownAffine:
        trainsize: *trainsize
        use_udp: true
  batch_transforms:
    - NormalizeImage:
        mean: *global_mean
        std: *global_std
        is_scale: true
    - Permute: {}
  batch_size: 16

TestReader:
  inputs_def:
    image_shape: [3, *train_height, *train_width]
  sample_transforms:
    - Decode: {}
    - TopDownEvalAffine:
        trainsize: *trainsize
    - NormalizeImage:
        mean: *global_mean
        std: *global_std
        is_scale: true
    - Permute: {}
  batch_size: 1
147
  fuse_normalize: false