visualize.py 12.0 KB
Newer Older
F
Feng Ni 已提交
1
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import division

import os
import cv2
import numpy as np
F
Feng Ni 已提交
20 21
from PIL import Image, ImageDraw, ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True
W
wangguanzhong 已提交
22
from collections import deque
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130


def visualize_box_mask(im, results, labels, threshold=0.5):
    """
    Args:
        im (str/np.ndarray): path of image/np.ndarray read by cv2
        results (dict): include 'boxes': np.ndarray: shape:[N,6], N: number of box,
                        matix element:[class, score, x_min, y_min, x_max, y_max]
        labels (list): labels:['class1', ..., 'classn']
        threshold (float): Threshold of score.
    Returns:
        im (PIL.Image.Image): visualized image
    """
    if isinstance(im, str):
        im = Image.open(im).convert('RGB')
    else:
        im = Image.fromarray(im)
    if 'boxes' in results and len(results['boxes']) > 0:
        im = draw_box(im, results['boxes'], labels, threshold=threshold)
    return im


def get_color_map_list(num_classes):
    """
    Args:
        num_classes (int): number of class
    Returns:
        color_map (list): RGB color list
    """
    color_map = num_classes * [0, 0, 0]
    for i in range(0, num_classes):
        j = 0
        lab = i
        while lab:
            color_map[i * 3] |= (((lab >> 0) & 1) << (7 - j))
            color_map[i * 3 + 1] |= (((lab >> 1) & 1) << (7 - j))
            color_map[i * 3 + 2] |= (((lab >> 2) & 1) << (7 - j))
            j += 1
            lab >>= 3
    color_map = [color_map[i:i + 3] for i in range(0, len(color_map), 3)]
    return color_map


def draw_box(im, np_boxes, labels, threshold=0.5):
    """
    Args:
        im (PIL.Image.Image): PIL image
        np_boxes (np.ndarray): shape:[N,6], N: number of box,
                               matix element:[class, score, x_min, y_min, x_max, y_max]
        labels (list): labels:['class1', ..., 'classn']
        threshold (float): threshold of box
    Returns:
        im (PIL.Image.Image): visualized image
    """
    draw_thickness = min(im.size) // 320
    draw = ImageDraw.Draw(im)
    clsid2color = {}
    color_list = get_color_map_list(len(labels))
    expect_boxes = (np_boxes[:, 1] > threshold) & (np_boxes[:, 0] > -1)
    np_boxes = np_boxes[expect_boxes, :]

    for dt in np_boxes:
        clsid, bbox, score = int(dt[0]), dt[2:], dt[1]
        if clsid not in clsid2color:
            clsid2color[clsid] = color_list[clsid]
        color = tuple(clsid2color[clsid])

        if len(bbox) == 4:
            xmin, ymin, xmax, ymax = bbox
            print('class_id:{:d}, confidence:{:.4f}, left_top:[{:.2f},{:.2f}],'
                  'right_bottom:[{:.2f},{:.2f}]'.format(
                      int(clsid), score, xmin, ymin, xmax, ymax))
            # draw bbox
            draw.line(
                [(xmin, ymin), (xmin, ymax), (xmax, ymax), (xmax, ymin),
                 (xmin, ymin)],
                width=draw_thickness,
                fill=color)
        elif len(bbox) == 8:
            x1, y1, x2, y2, x3, y3, x4, y4 = bbox
            draw.line(
                [(x1, y1), (x2, y2), (x3, y3), (x4, y4), (x1, y1)],
                width=2,
                fill=color)
            xmin = min(x1, x2, x3, x4)
            ymin = min(y1, y2, y3, y4)

        # draw label
        text = "{} {:.4f}".format(labels[clsid], score)
        tw, th = draw.textsize(text)
        draw.rectangle(
            [(xmin + 1, ymin - th), (xmin + tw + 1, ymin)], fill=color)
        draw.text((xmin + 1, ymin - th), text, fill=(255, 255, 255))
    return im


def get_color(idx):
    idx = idx * 3
    color = ((37 * idx) % 255, (17 * idx) % 255, (29 * idx) % 255)
    return color


def plot_tracking(image,
                  tlwhs,
                  obj_ids,
                  scores=None,
                  frame_id=0,
                  fps=0.,
131 132 133
                  ids2names=[],
                  do_entrance_counting=False,
                  entrance=None):
134 135 136
    im = np.ascontiguousarray(np.copy(image))
    im_h, im_w = im.shape[:2]

W
wangguanzhong 已提交
137
    text_scale = max(0.5, image.shape[1] / 3000.)
138 139 140 141 142 143
    text_thickness = 2
    line_thickness = max(1, int(image.shape[1] / 500.))

    cv2.putText(
        im,
        'frame: %d fps: %.2f num: %d' % (frame_id, fps, len(tlwhs)),
W
wangguanzhong 已提交
144 145
        (0, int(15 * text_scale) + 5),
        cv2.FONT_ITALIC,
146
        text_scale, (0, 0, 255),
W
wangguanzhong 已提交
147
        thickness=text_thickness)
148 149 150 151
    for i, tlwh in enumerate(tlwhs):
        x1, y1, w, h = tlwh
        intbox = tuple(map(int, (x1, y1, x1 + w, y1 + h)))
        obj_id = int(obj_ids[i])
W
wangguanzhong 已提交
152
        id_text = 'ID: {}'.format(int(obj_id))
153
        if ids2names != []:
154 155
            assert len(
                ids2names) == 1, "plot_tracking only supports single classes."
W
wangguanzhong 已提交
156
            id_text = 'ID: {}_'.format(ids2names[0]) + id_text
157 158 159 160 161 162
        _line_thickness = 1 if obj_id <= 0 else line_thickness
        color = get_color(abs(obj_id))
        cv2.rectangle(
            im, intbox[0:2], intbox[2:4], color=color, thickness=line_thickness)
        cv2.putText(
            im,
W
wangguanzhong 已提交
163 164 165
            id_text, (intbox[0], intbox[1] - 25),
            cv2.FONT_ITALIC,
            text_scale, (0, 255, 255),
166 167 168
            thickness=text_thickness)

        if scores is not None:
W
wangguanzhong 已提交
169
            text = 'score: {:.2f}'.format(float(scores[i]))
170 171
            cv2.putText(
                im,
W
wangguanzhong 已提交
172 173 174
                text, (intbox[0], intbox[1] - 6),
                cv2.FONT_ITALIC,
                text_scale, (0, 255, 0),
175
                thickness=text_thickness)
176 177 178 179 180 181 182 183
    if do_entrance_counting:
        entrance_line = tuple(map(int, entrance))
        cv2.rectangle(
            im,
            entrance_line[0:2],
            entrance_line[2:4],
            color=(0, 255, 255),
            thickness=line_thickness)
184 185 186 187 188 189 190 191 192 193
    return im


def plot_tracking_dict(image,
                       num_classes,
                       tlwhs_dict,
                       obj_ids_dict,
                       scores_dict,
                       frame_id=0,
                       fps=0.,
194
                       ids2names=['pedestrian'],
195
                       do_entrance_counting=False,
196
                       do_break_in_counting=False,
W
wangguanzhong 已提交
197 198 199
                       entrance=None,
                       records=None,
                       center_traj=None):
200 201
    im = np.ascontiguousarray(np.copy(image))
    im_h, im_w = im.shape[:2]
202 203
    if do_break_in_counting:
        entrance = np.array(entrance[:-1])  # last pair is [im_w, im_h] 
204

W
wangguanzhong 已提交
205
    text_scale = max(0.5, image.shape[1] / 3000.)
206 207 208
    text_thickness = 2
    line_thickness = max(1, int(image.shape[1] / 500.))

W
wangguanzhong 已提交
209
    if num_classes == 1:
F
Feng Ni 已提交
210 211 212 213 214
        if records is not None:
            start = records[-1].find('Total')
            end = records[-1].find('In')
            cv2.putText(
                im,
215
                records[-1][start:end], (0, int(40 * text_scale) + 10),
W
wangguanzhong 已提交
216
                cv2.FONT_ITALIC,
F
Feng Ni 已提交
217
                text_scale, (0, 0, 255),
W
wangguanzhong 已提交
218
                thickness=text_thickness)
W
wangguanzhong 已提交
219 220 221 222 223 224 225 226 227 228 229 230 231

    if num_classes == 1 and do_entrance_counting:
        entrance_line = tuple(map(int, entrance))
        cv2.rectangle(
            im,
            entrance_line[0:2],
            entrance_line[2:4],
            color=(0, 255, 255),
            thickness=line_thickness)
        # find start location for entrance counting data
        start = records[-1].find('In')
        cv2.putText(
            im,
232
            records[-1][start:-1], (0, int(60 * text_scale) + 10),
W
wangguanzhong 已提交
233
            cv2.FONT_ITALIC,
W
wangguanzhong 已提交
234
            text_scale, (0, 0, 255),
W
wangguanzhong 已提交
235
            thickness=text_thickness)
W
wangguanzhong 已提交
236

237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
    if num_classes == 1 and do_break_in_counting:
        np_masks = np.zeros((im_h, im_w, 1), np.uint8)
        cv2.fillPoly(np_masks, [entrance], 255)

        # Draw region mask
        alpha = 0.3
        im = np.array(im).astype('float32')
        mask = np_masks[:, :, 0]
        color_mask = [0, 0, 255]
        idx = np.nonzero(mask)
        color_mask = np.array(color_mask)
        im[idx[0], idx[1], :] *= 1.0 - alpha
        im[idx[0], idx[1], :] += alpha * color_mask
        im = np.array(im).astype('uint8')

        # find start location for break in counting data
        start = records[-1].find('Break_in')
        cv2.putText(
            im,
            records[-1][start:-1], (entrance[0][0] - 10, entrance[0][1] - 10),
            cv2.FONT_ITALIC,
            text_scale, (0, 0, 255),
            thickness=text_thickness)

261 262 263 264 265 266 267
    for cls_id in range(num_classes):
        tlwhs = tlwhs_dict[cls_id]
        obj_ids = obj_ids_dict[cls_id]
        scores = scores_dict[cls_id]
        cv2.putText(
            im,
            'frame: %d fps: %.2f num: %d' % (frame_id, fps, len(tlwhs)),
W
wangguanzhong 已提交
268 269
            (0, int(15 * text_scale) + 5),
            cv2.FONT_ITALIC,
270
            text_scale, (0, 0, 255),
W
wangguanzhong 已提交
271
            thickness=text_thickness)
272

W
wangguanzhong 已提交
273
        record_id = set()
274 275 276
        for i, tlwh in enumerate(tlwhs):
            x1, y1, w, h = tlwh
            intbox = tuple(map(int, (x1, y1, x1 + w, y1 + h)))
W
wangguanzhong 已提交
277
            center = tuple(map(int, (x1 + w / 2., y1 + h / 2.)))
278
            obj_id = int(obj_ids[i])
W
wangguanzhong 已提交
279 280
            if center_traj is not None:
                record_id.add(obj_id)
W
wangguanzhong 已提交
281 282 283
                if obj_id not in center_traj[cls_id]:
                    center_traj[cls_id][obj_id] = deque(maxlen=30)
                center_traj[cls_id][obj_id].append(center)
284 285 286 287 288 289 290 291

            id_text = '{}'.format(int(obj_id))
            if ids2names != []:
                id_text = '{}_{}'.format(ids2names[cls_id], id_text)
            else:
                id_text = 'class{}_{}'.format(cls_id, id_text)

            _line_thickness = 1 if obj_id <= 0 else line_thickness
292 293 294 295 296 297 298 299 300 301 302

            in_region = False
            if do_break_in_counting:
                center_x = min(x1 + w / 2., im_w - 1)
                center_down_y = min(y1 + h, im_h - 1)
                if in_quadrangle([center_x, center_down_y], entrance, im_h,
                                 im_w):
                    in_region = True

            color = get_color(abs(obj_id)) if in_region == False else (0, 0,
                                                                       255)
303 304 305 306 307 308 309 310
            cv2.rectangle(
                im,
                intbox[0:2],
                intbox[2:4],
                color=color,
                thickness=line_thickness)
            cv2.putText(
                im,
W
wangguanzhong 已提交
311 312
                id_text, (intbox[0], intbox[1] - 25),
                cv2.FONT_ITALIC,
313 314
                text_scale,
                color,
315 316
                thickness=text_thickness)

317 318 319 320 321 322 323 324
            if do_break_in_counting and in_region:
                cv2.putText(
                    im,
                    'Break in now.', (intbox[0], intbox[1] - 50),
                    cv2.FONT_ITALIC,
                    text_scale, (0, 0, 255),
                    thickness=text_thickness)

325
            if scores is not None:
W
wangguanzhong 已提交
326
                text = 'score: {:.2f}'.format(float(scores[i]))
327 328
                cv2.putText(
                    im,
W
wangguanzhong 已提交
329 330
                    text, (intbox[0], intbox[1] - 6),
                    cv2.FONT_ITALIC,
331 332
                    text_scale,
                    color,
333
                    thickness=text_thickness)
W
wangguanzhong 已提交
334 335 336 337 338 339 340
        if center_traj is not None:
            for traj in center_traj:
                for i in traj.keys():
                    if i not in record_id:
                        continue
                    for point in traj[i]:
                        cv2.circle(im, point, 3, (0, 0, 255), -1)
341
    return im
342 343 344 345 346 347 348 349 350 351


def in_quadrangle(point, entrance, im_h, im_w):
    mask = np.zeros((im_h, im_w, 1), np.uint8)
    cv2.fillPoly(mask, [entrance], 255)
    p = tuple(map(int, point))
    if mask[p[1], p[0], :] > 0:
        return True
    else:
        return False