visualize.py 10.0 KB
Newer Older
F
Feng Ni 已提交
1
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import division

import os
import cv2
import numpy as np
F
Feng Ni 已提交
20 21
from PIL import Image, ImageDraw, ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True
W
wangguanzhong 已提交
22
from collections import deque
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130


def visualize_box_mask(im, results, labels, threshold=0.5):
    """
    Args:
        im (str/np.ndarray): path of image/np.ndarray read by cv2
        results (dict): include 'boxes': np.ndarray: shape:[N,6], N: number of box,
                        matix element:[class, score, x_min, y_min, x_max, y_max]
        labels (list): labels:['class1', ..., 'classn']
        threshold (float): Threshold of score.
    Returns:
        im (PIL.Image.Image): visualized image
    """
    if isinstance(im, str):
        im = Image.open(im).convert('RGB')
    else:
        im = Image.fromarray(im)
    if 'boxes' in results and len(results['boxes']) > 0:
        im = draw_box(im, results['boxes'], labels, threshold=threshold)
    return im


def get_color_map_list(num_classes):
    """
    Args:
        num_classes (int): number of class
    Returns:
        color_map (list): RGB color list
    """
    color_map = num_classes * [0, 0, 0]
    for i in range(0, num_classes):
        j = 0
        lab = i
        while lab:
            color_map[i * 3] |= (((lab >> 0) & 1) << (7 - j))
            color_map[i * 3 + 1] |= (((lab >> 1) & 1) << (7 - j))
            color_map[i * 3 + 2] |= (((lab >> 2) & 1) << (7 - j))
            j += 1
            lab >>= 3
    color_map = [color_map[i:i + 3] for i in range(0, len(color_map), 3)]
    return color_map


def draw_box(im, np_boxes, labels, threshold=0.5):
    """
    Args:
        im (PIL.Image.Image): PIL image
        np_boxes (np.ndarray): shape:[N,6], N: number of box,
                               matix element:[class, score, x_min, y_min, x_max, y_max]
        labels (list): labels:['class1', ..., 'classn']
        threshold (float): threshold of box
    Returns:
        im (PIL.Image.Image): visualized image
    """
    draw_thickness = min(im.size) // 320
    draw = ImageDraw.Draw(im)
    clsid2color = {}
    color_list = get_color_map_list(len(labels))
    expect_boxes = (np_boxes[:, 1] > threshold) & (np_boxes[:, 0] > -1)
    np_boxes = np_boxes[expect_boxes, :]

    for dt in np_boxes:
        clsid, bbox, score = int(dt[0]), dt[2:], dt[1]
        if clsid not in clsid2color:
            clsid2color[clsid] = color_list[clsid]
        color = tuple(clsid2color[clsid])

        if len(bbox) == 4:
            xmin, ymin, xmax, ymax = bbox
            print('class_id:{:d}, confidence:{:.4f}, left_top:[{:.2f},{:.2f}],'
                  'right_bottom:[{:.2f},{:.2f}]'.format(
                      int(clsid), score, xmin, ymin, xmax, ymax))
            # draw bbox
            draw.line(
                [(xmin, ymin), (xmin, ymax), (xmax, ymax), (xmax, ymin),
                 (xmin, ymin)],
                width=draw_thickness,
                fill=color)
        elif len(bbox) == 8:
            x1, y1, x2, y2, x3, y3, x4, y4 = bbox
            draw.line(
                [(x1, y1), (x2, y2), (x3, y3), (x4, y4), (x1, y1)],
                width=2,
                fill=color)
            xmin = min(x1, x2, x3, x4)
            ymin = min(y1, y2, y3, y4)

        # draw label
        text = "{} {:.4f}".format(labels[clsid], score)
        tw, th = draw.textsize(text)
        draw.rectangle(
            [(xmin + 1, ymin - th), (xmin + tw + 1, ymin)], fill=color)
        draw.text((xmin + 1, ymin - th), text, fill=(255, 255, 255))
    return im


def get_color(idx):
    idx = idx * 3
    color = ((37 * idx) % 255, (17 * idx) % 255, (29 * idx) % 255)
    return color


def plot_tracking(image,
                  tlwhs,
                  obj_ids,
                  scores=None,
                  frame_id=0,
                  fps=0.,
131 132 133
                  ids2names=[],
                  do_entrance_counting=False,
                  entrance=None):
134 135 136
    im = np.ascontiguousarray(np.copy(image))
    im_h, im_w = im.shape[:2]

W
wangguanzhong 已提交
137
    text_scale = max(0.5, image.shape[1] / 3000.)
138 139 140 141 142 143
    text_thickness = 2
    line_thickness = max(1, int(image.shape[1] / 500.))

    cv2.putText(
        im,
        'frame: %d fps: %.2f num: %d' % (frame_id, fps, len(tlwhs)),
W
wangguanzhong 已提交
144 145
        (0, int(15 * text_scale) + 5),
        cv2.FONT_ITALIC,
146
        text_scale, (0, 0, 255),
W
wangguanzhong 已提交
147
        thickness=text_thickness)
148 149 150 151
    for i, tlwh in enumerate(tlwhs):
        x1, y1, w, h = tlwh
        intbox = tuple(map(int, (x1, y1, x1 + w, y1 + h)))
        obj_id = int(obj_ids[i])
W
wangguanzhong 已提交
152
        id_text = 'ID: {}'.format(int(obj_id))
153
        if ids2names != []:
154 155
            assert len(
                ids2names) == 1, "plot_tracking only supports single classes."
W
wangguanzhong 已提交
156
            id_text = 'ID: {}_'.format(ids2names[0]) + id_text
157 158 159 160 161 162
        _line_thickness = 1 if obj_id <= 0 else line_thickness
        color = get_color(abs(obj_id))
        cv2.rectangle(
            im, intbox[0:2], intbox[2:4], color=color, thickness=line_thickness)
        cv2.putText(
            im,
W
wangguanzhong 已提交
163 164 165
            id_text, (intbox[0], intbox[1] - 25),
            cv2.FONT_ITALIC,
            text_scale, (0, 255, 255),
166 167 168
            thickness=text_thickness)

        if scores is not None:
W
wangguanzhong 已提交
169
            text = 'score: {:.2f}'.format(float(scores[i]))
170 171
            cv2.putText(
                im,
W
wangguanzhong 已提交
172 173 174
                text, (intbox[0], intbox[1] - 6),
                cv2.FONT_ITALIC,
                text_scale, (0, 255, 0),
175
                thickness=text_thickness)
176 177 178 179 180 181 182 183
    if do_entrance_counting:
        entrance_line = tuple(map(int, entrance))
        cv2.rectangle(
            im,
            entrance_line[0:2],
            entrance_line[2:4],
            color=(0, 255, 255),
            thickness=line_thickness)
184 185 186 187 188 189 190 191 192 193
    return im


def plot_tracking_dict(image,
                       num_classes,
                       tlwhs_dict,
                       obj_ids_dict,
                       scores_dict,
                       frame_id=0,
                       fps=0.,
194 195
                       ids2names=[],
                       do_entrance_counting=False,
W
wangguanzhong 已提交
196 197 198
                       entrance=None,
                       records=None,
                       center_traj=None):
199 200 201
    im = np.ascontiguousarray(np.copy(image))
    im_h, im_w = im.shape[:2]

W
wangguanzhong 已提交
202
    text_scale = max(0.5, image.shape[1] / 3000.)
203 204 205
    text_thickness = 2
    line_thickness = max(1, int(image.shape[1] / 500.))

W
wangguanzhong 已提交
206
    if num_classes == 1:
F
Feng Ni 已提交
207 208 209 210 211
        if records is not None:
            start = records[-1].find('Total')
            end = records[-1].find('In')
            cv2.putText(
                im,
212
                records[-1][start:end], (0, int(40 * text_scale) + 10),
W
wangguanzhong 已提交
213
                cv2.FONT_ITALIC,
F
Feng Ni 已提交
214
                text_scale, (0, 0, 255),
W
wangguanzhong 已提交
215
                thickness=text_thickness)
W
wangguanzhong 已提交
216 217 218 219 220 221 222 223 224 225 226 227 228

    if num_classes == 1 and do_entrance_counting:
        entrance_line = tuple(map(int, entrance))
        cv2.rectangle(
            im,
            entrance_line[0:2],
            entrance_line[2:4],
            color=(0, 255, 255),
            thickness=line_thickness)
        # find start location for entrance counting data
        start = records[-1].find('In')
        cv2.putText(
            im,
229
            records[-1][start:-1], (0, int(60 * text_scale) + 10),
W
wangguanzhong 已提交
230
            cv2.FONT_ITALIC,
W
wangguanzhong 已提交
231
            text_scale, (0, 0, 255),
W
wangguanzhong 已提交
232
            thickness=text_thickness)
W
wangguanzhong 已提交
233

234 235 236 237 238 239 240
    for cls_id in range(num_classes):
        tlwhs = tlwhs_dict[cls_id]
        obj_ids = obj_ids_dict[cls_id]
        scores = scores_dict[cls_id]
        cv2.putText(
            im,
            'frame: %d fps: %.2f num: %d' % (frame_id, fps, len(tlwhs)),
W
wangguanzhong 已提交
241 242
            (0, int(15 * text_scale) + 5),
            cv2.FONT_ITALIC,
243
            text_scale, (0, 0, 255),
W
wangguanzhong 已提交
244
            thickness=text_thickness)
245

W
wangguanzhong 已提交
246
        record_id = set()
247 248 249
        for i, tlwh in enumerate(tlwhs):
            x1, y1, w, h = tlwh
            intbox = tuple(map(int, (x1, y1, x1 + w, y1 + h)))
W
wangguanzhong 已提交
250
            center = tuple(map(int, (x1 + w / 2., y1 + h / 2.)))
251
            obj_id = int(obj_ids[i])
W
wangguanzhong 已提交
252 253
            if center_traj is not None:
                record_id.add(obj_id)
W
wangguanzhong 已提交
254 255 256
                if obj_id not in center_traj[cls_id]:
                    center_traj[cls_id][obj_id] = deque(maxlen=30)
                center_traj[cls_id][obj_id].append(center)
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273

            id_text = '{}'.format(int(obj_id))
            if ids2names != []:
                id_text = '{}_{}'.format(ids2names[cls_id], id_text)
            else:
                id_text = 'class{}_{}'.format(cls_id, id_text)

            _line_thickness = 1 if obj_id <= 0 else line_thickness
            color = get_color(abs(obj_id))
            cv2.rectangle(
                im,
                intbox[0:2],
                intbox[2:4],
                color=color,
                thickness=line_thickness)
            cv2.putText(
                im,
W
wangguanzhong 已提交
274 275 276
                id_text, (intbox[0], intbox[1] - 25),
                cv2.FONT_ITALIC,
                text_scale, (0, 255, 255),
277 278 279
                thickness=text_thickness)

            if scores is not None:
W
wangguanzhong 已提交
280
                text = 'score: {:.2f}'.format(float(scores[i]))
281 282
                cv2.putText(
                    im,
W
wangguanzhong 已提交
283 284 285
                    text, (intbox[0], intbox[1] - 6),
                    cv2.FONT_ITALIC,
                    text_scale, (0, 255, 0),
286
                    thickness=text_thickness)
W
wangguanzhong 已提交
287 288 289 290 291 292 293
        if center_traj is not None:
            for traj in center_traj:
                for i in traj.keys():
                    if i not in record_id:
                        continue
                    for point in traj[i]:
                        cv2.circle(im, point, 3, (0, 0, 255), -1)
294
    return im