object_detector.cc 7.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
//   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
J
jack 已提交
14 15 16 17
#include <sstream>
// for setprecision
#include <iomanip>
#include "include/object_detector.h"
18 19 20 21 22 23
#ifdef _WIN32
#include <direct.h>
#include <io.h>
#else  // Linux/Unix
#include <unistd.h>
#endif
24 25 26 27

namespace PaddleDetection {

// Load Model and create model predictor
28 29 30
void ObjectDetector::LoadModel(const std::string& model_dir,
                               bool use_gpu,
                               const int min_subgraph_size,
31
                               const int batch_size,
C
channings 已提交
32 33
                               const std::string& run_mode,
                               const int gpu_id) {
34 35 36
  paddle::AnalysisConfig config;
  std::string prog_file = model_dir + OS_PATH_SEP + "__model__";
  std::string params_file = model_dir + OS_PATH_SEP + "__params__";
37 38 39 40 41
  if (access(prog_file.c_str(), 0) < 0 || access(params_file.c_str(), 0) < 0) {
    std::cerr << "[WARNING] Model file or parameter file can't be found." << std::endl;
    success_init_ = false;
    return;
  }
42 43
  config.SetModel(prog_file, params_file);
  if (use_gpu) {
C
channings 已提交
44
    config.EnableUseGpu(100, gpu_id);
45 46 47 48 49
    if (run_mode != "fluid") {
      auto precision = paddle::AnalysisConfig::Precision::kFloat32;
      if (run_mode == "trt_fp16") {
        precision = paddle::AnalysisConfig::Precision::kHalf;
      } else if (run_mode == "trt_int8") {
W
wangguanzhong 已提交
50 51
        printf("TensorRT int8 mode is not supported now, "
               "please use 'trt_fp32' or 'trt_fp16' instead");
52 53 54 55 56 57 58 59 60 61 62
      } else {
        if (run_mode != "trt_32") {
          printf("run_mode should be 'fluid', 'trt_fp32' or 'trt_fp16'");
        }
      }
      config.EnableTensorRtEngine(
          1 << 10,
          batch_size,
          min_subgraph_size,
          precision,
          false,
W
wangguanzhong 已提交
63
          false);
J
jack 已提交
64
   }
65
  } else {
66
    config.DisableGpu();
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
  }
  config.SwitchUseFeedFetchOps(false);
  config.SwitchSpecifyInputNames(true);
  // Memory optimization
  config.EnableMemoryOptim();
  predictor_ = std::move(CreatePaddlePredictor(config));
}

// Visualiztion MaskDetector results
cv::Mat VisualizeResult(const cv::Mat& img,
                        const std::vector<ObjectResult>& results,
                        const std::vector<std::string>& lable_list,
                        const std::vector<int>& colormap) {
  cv::Mat vis_img = img.clone();
  for (int i = 0; i < results.size(); ++i) {
    int w = results[i].rect[1] - results[i].rect[0];
    int h = results[i].rect[3] - results[i].rect[2];
    cv::Rect roi = cv::Rect(results[i].rect[0], results[i].rect[2], w, h);

    // Configure color and text size
J
jack 已提交
87 88 89 90 91
    std::ostringstream oss;
    oss << std::setiosflags(std::ios::fixed) << std::setprecision(4);
    oss << lable_list[results[i].class_id] << " ";
    oss << results[i].confidence;
    std::string text = oss.str();
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
    int c1 = colormap[3 * results[i].class_id + 0];
    int c2 = colormap[3 * results[i].class_id + 1];
    int c3 = colormap[3 * results[i].class_id + 2];
    cv::Scalar roi_color = cv::Scalar(c1, c2, c3);
    int font_face = cv::FONT_HERSHEY_COMPLEX_SMALL;
    double font_scale = 0.5f;
    float thickness = 0.5;
    cv::Size text_size = cv::getTextSize(text,
                                         font_face,
                                         font_scale,
                                         thickness,
                                         nullptr);
    cv::Point origin;
    origin.x = roi.x;
    origin.y = roi.y;

    // Configure text background
    cv::Rect text_back = cv::Rect(results[i].rect[0],
                                  results[i].rect[2] - text_size.height,
                                  text_size.width,
                                  text_size.height);

    // Draw roi object, text, and background
    cv::rectangle(vis_img, roi, roi_color, 2);
    cv::rectangle(vis_img, text_back, roi_color, -1);
    cv::putText(vis_img,
                text,
                origin,
                font_face,
121
                font_scale,
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
                cv::Scalar(255, 255, 255),
                thickness);
  }
  return vis_img;
}

void ObjectDetector::Preprocess(const cv::Mat& ori_im) {
  // Clone the image : keep the original mat for postprocess
  cv::Mat im = ori_im.clone();
  cv::cvtColor(im, im, cv::COLOR_BGR2RGB);
  preprocessor_.Run(&im, &inputs_);
}

void ObjectDetector::Postprocess(
    const cv::Mat& raw_mat,
    std::vector<ObjectResult>* result) {
  result->clear();
  int rh = 1;
  int rw = 1;
  if (config_.arch_ == "SSD" || config_.arch_ == "Face") {
    rh = raw_mat.rows;
    rw = raw_mat.cols;
  }

  int total_size = output_data_.size() / 6;
  for (int j = 0; j < total_size; ++j) {
    // Class id
    int class_id = static_cast<int>(round(output_data_[0 + j * 6]));
    // Confidence score
    float score = output_data_[1 + j * 6];
    int xmin = (output_data_[2 + j * 6] * rw);
    int ymin = (output_data_[3 + j * 6] * rh);
    int xmax = (output_data_[4 + j * 6] * rw);
    int ymax = (output_data_[5 + j * 6] * rh);
    int wd = xmax - xmin;
    int hd = ymax - ymin;
W
wangguanzhong 已提交
158
    if (score > threshold_ && class_id > -1) {
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
      ObjectResult result_item;
      result_item.rect = {xmin, xmax, ymin, ymax};
      result_item.class_id = class_id;
      result_item.confidence = score;
      result->push_back(result_item);
    }
  }
}

void ObjectDetector::Predict(const cv::Mat& im,
                                  std::vector<ObjectResult>* result) {
  // Preprocess image
  Preprocess(im);
  // Prepare input tensor
  auto input_names = predictor_->GetInputNames();
  for (const auto& tensor_name : input_names) {
    auto in_tensor = predictor_->GetInputTensor(tensor_name);
    if (tensor_name == "image") {
      int rh = inputs_.eval_im_size_f_[0];
      int rw = inputs_.eval_im_size_f_[1];
      in_tensor->Reshape({1, 3, rh, rw});
      in_tensor->copy_from_cpu(inputs_.im_data_.data());
    } else if (tensor_name == "im_size") {
      in_tensor->Reshape({1, 2});
      in_tensor->copy_from_cpu(inputs_.ori_im_size_.data());
    } else if (tensor_name == "im_info") {
      in_tensor->Reshape({1, 3});
      in_tensor->copy_from_cpu(inputs_.eval_im_size_f_.data());
    } else if (tensor_name == "im_shape") {
      in_tensor->Reshape({1, 3});
      in_tensor->copy_from_cpu(inputs_.ori_im_size_f_.data());
W
wangguanzhong 已提交
190 191 192
    } else if (tensor_name == "scale_factor") {
      in_tensor->Reshape({1, 4});
      in_tensor->copy_from_cpu(inputs_.scale_factor_f_.data());
193 194 195 196 197 198 199 200 201 202 203
    }
  }
  // Run predictor
  predictor_->ZeroCopyRun();
  // Get output tensor
  auto output_names = predictor_->GetOutputNames();
  auto out_tensor = predictor_->GetOutputTensor(output_names[0]);
  std::vector<int> output_shape = out_tensor->shape();
  // Calculate output length
  int output_size = 1;
  for (int j = 0; j < output_shape.size(); ++j) {
C
channings 已提交
204 205 206 207 208
    output_size *= output_shape[j];
  }

  if (output_size < 6) {
    std::cerr << "[WARNING] No object detected." << std::endl;
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
  }
  output_data_.resize(output_size);
  out_tensor->copy_to_cpu(output_data_.data());
  // Postprocessing result
  Postprocess(im,  result);
}

std::vector<int> GenerateColorMap(int num_class) {
  auto colormap = std::vector<int>(3 * num_class, 0);
  for (int i = 0; i < num_class; ++i) {
    int j = 0;
    int lab = i;
    while (lab) {
      colormap[i * 3] |= (((lab >> 0) & 1) << (7 - j));
      colormap[i * 3 + 1] |= (((lab >> 1) & 1) << (7 - j));
      colormap[i * 3 + 2] |= (((lab >> 2) & 1) << (7 - j));
      ++j;
      lab >>= 3;
    }
  }
  return colormap;
}

}  // namespace PaddleDetection