fluid_cluster_train_cn.md 6.8 KB
Newer Older
T
tangwei12 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
# Fluid 分布式版本使用指南
本篇文章将说明在PaddlePaddle Fluid版本下进行分布式训练的配置和执行

## 准备工作
* 可用的集群
    包含一个或多个计算节点的集群,每一个节点都能够执行PaddlePaddle的训练任务且拥有唯一的IP地址,集群内的所有计算节点可以通过网络相互通信。
* 安装PaddlePaddle Fluid with Distribute 版本
    所有的计算节点上均需要按照分布式版本的PaddlePaddle, 在用于GPU等设备的机器上还需要额外安装好相应的驱动程序和CUDA的库。
    **注意:**当前对外提供的PaddlePaddle版本并不支持分布式,需要通过源码重新编译。编译和安装方法参见[编译和安装指南](http://www.paddlepaddle.org/docs/develop/documentation/en/getstarted/build_and_install/index_en.html)
    cmake编译命令中需要将WITH_DISTRIBUTE设置为ON,下面是一个cmake编译指令示例:
``` 
cmake .. -DWITH_DOC=OFF -DWITH_GPU=OFF -DWITH_DISTRIBUTE=ON -DWITH_SWIG_PY=ON -DWITH_PYTHON=ON
```

## 更新训练脚本
这里,我们以[Deep Learing 101](http://www.paddlepaddle.org/docs/develop/book/01.fit_a_line/index.html)课程中的第一章 fit a line 为例。
### 单机训练脚本示例
```python
import paddle.v2 as paddle
import paddle.fluid as fluid

x = fluid.layers.data(name='x', shape=[13], dtype='float32')
y_predict = fluid.layers.fc(input=x, size=1, act=None)
y = fluid.layers.data(name='y', shape=[1], dtype='float32')

cost = fluid.layers.square_error_cost(input=y_predict, label=y)
avg_cost = fluid.layers.mean(x=cost)

sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
sgd_optimizer.minimize(avg_cost)

BATCH_SIZE = 20

train_reader = paddle.batch(
    paddle.reader.shuffle(
        paddle.dataset.uci_housing.train(), buf_size=500),
    batch_size=BATCH_SIZE)

place = fluid.CPUPlace()
feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
exe = fluid.Executor(place)

exe.run(fluid.default_startup_program())

PASS_NUM = 100
for pass_id in range(PASS_NUM):
    fluid.io.save_persistables(exe, "./fit_a_line.model/")
    fluid.io.load_persistables(exe, "./fit_a_line.model/")
    for data in train_reader():
        avg_loss_value, = exe.run(fluid.default_main_program(),
                                  feed=feeder.feed(data),
                                  fetch_list=[avg_cost])

        if avg_loss_value[0] < 10.0:
            exit(0)  # if avg cost less than 10.0, we think our code is good.
exit(1)
```

我们创建了一个简单的全连接神经网络程序,并且通过fluid的Executor执行了100次迭代,现在我们需要将该非分布式版本的程序更新为分布式版本的程序。
### 介绍Parameter Server
T
tangwei12 已提交
61
在非分布式版本的训练脚本中,只存在Trainer一种角色,它不仅处理常规的计算任务,也处理参数相关的计算和保存任务。在分布式版本的训练过程中,由于存在多个Trainer节点进行同样的数据计算任务,因此需要有一个中心化的节点来统一处理参数相关的保存和分配。在PaddlePaddle中,我们称这样的节点为Parameter Server, [Parameter Server 设计文档](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/fluid/design/dist_train/parameter_server.md)
T
tangwei12 已提交
62 63

**因此,在分布式的Fluid环境中,我们有两个角色需要创建,分别是 Parameter Server 和 Trainer。**
T
tangwei12 已提交
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99

### 分布式训练 
Fliud专门提供了工具"**Distributed Transpiler**"用于将单机版的训练程序转换为分布式版本的训练程序。工具背后的理念是找出程序的优化算子和梯度参数,将他们分隔为两部分,通过send/recive 操作算子进行连接,优化算子和梯度参数可以在优化器的minimize函数的返回值中获取到。
```python
optimize_ops, params_grads = sgd_optimizer.minimize(avg_cost) 
```
将Distributed Transpiler、优化算子 和梯度函数放在一个代码中如下:
```python
... #define the program, cost, and create sgd optimizer

optimize_ops, params_grads = sgd_optimizer.minimize(avg_cost) #get optimize OPs and gradient parameters

t = fluid.DistributeTranspiler() # create the transpiler instance
# slice the program into 2 pieces with optimizer_ops and gradient parameters list, as well as pserver_endpoints, which is a comma separated list of [IP:PORT] and number of trainers
t.transpile(optimize_ops, params_grads, pservers=pserver_endpoints, trainers=2)

... #create executor

# in pserver, run this
#current_endpoint here means current pserver IP:PORT you wish to run on
pserver_prog = t.get_pserver_program(current_endpoint)
pserver_startup = t.get_startup_program(current_endpoint, pserver_prog)
exe.run(pserver_startup)
exe.run(pserver_prog)

# in trainer, run this
... # define data reader
exe.run(fluid.default_startup_program())
for pass_id in range(100):
    for data in train_reader():
        exe.run(t.get_trainer_program())
```
### 分布式训练脚本运行说明
分布式任务的运行需要外部指定多个参数:
```table
| 参数名 | 值类型 | 说明 | 示例 |
T
tangwei12 已提交
100
| :------------- | :---| :--------------------------------------- | :------------- |
T
tangwei12 已提交
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
| trainer_id | int | 当前训练节点的ID,训练节点ID编号为0 - n-1, n为trainers的值 | 0/1/2/3 |
| pservers | str | parameter server 列表 | 127.0.0.1:6710,127.0.0.1:6711 |
| trainers | int | 训练节点的总个数,>0的数字 | |
| server_endpoint | str | 当前所起的服务节点的IP:PORT | 127.0.0.1:8789 |
| training_role | str | 节点角色, TRAINER/PSERVER | PSERVER |
```
启动顺序,先启动全部的Pserver后,再启动TRAINER。
**其中:training_role 是用来区分当前所起服务的角色的,用于训练程序中,用户可根据需要自行定义,其他参数为fluid.DistributeTranspiler的transpile函数所需要,需要在调用函数前进行定义,至于如何从外部环境传入,用户可自定义。**

### DEMO
完整的demo代码位于fluid的test目录下的[book](https://github.com/PaddlePaddle/Paddle/blob/develop/python/paddle/fluid/tests/book/test_fit_a_line.py)中。
```
cd /paddle/python/paddle/fluid/tests/book
```
第一步:启动Parameter Server, 启动Parameter Server的命令:
```
PADDLE_INIT_PORT=6174 PADDLE_INIT_PSERVERS=192.168.1.2 TRAINERS=2 POD_IP=192.168.1.2 PADDLE_INIT_TRAINER_ID=1 TRAINING_ROLE=PSERVER python test_fit_a_line.py
```
执行命令后请等待出现提示: ```Server listening on 192.168.1.2:6174 ```
第二步:启动trainer, 启动trainer的命令:
```
PADDLE_INIT_PORT=6174 PADDLE_INIT_PSERVERS=192.168.1.3 TRAINERS=2 POD_IP=192.168.1.3 PADDLE_INIT_TRAINER_ID=1 TRAINING_ROLE=TRAINER python test_fit_a_line.py
```
由于我们定义的Trainer的数量是2个,因此需要在另外一个计算节点上再启动一个Trainer。
现在我们就启动了一个包含一个Parameter Server 和两个Trainer的分布式训练任务。