**因此,在分布式的Fluid环境中,我们有两个角色需要创建,分别是 Parameter Server 和 Trainer**
在非分布式版本的训练脚本中,只存在Trainer一种角色,它不仅处理常规的计算任务,也处理参数相关的计算和保存任务。在分布式版本的训练过程中,由于存在多个Trainer节点进行同样的数据计算任务,因此需要有一个中心化的节点来统一处理参数相关的保存和分配。在PaddlePaddle中,我们称这样的节点为Parameter Server, ![Parameter Server 设计文档](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/fluid/design/dist_train/parameter_server.md)
**因此,在分布式的Fluid环境中,我们有两个角色需要创建,分别是 Parameter Server 和 Trainer。**