eval.py 7.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os


def set_paddle_flags(**kwargs):
    for key, value in kwargs.items():
        if os.environ.get(key, None) is None:
            os.environ[key] = str(value)


# NOTE(paddle-dev): All of these flags should be set before
# `import paddle`. Otherwise, it would not take any effect.
set_paddle_flags(
    FLAGS_eager_delete_tensor_gb=0,  # enable GC to save memory
)

import paddle.fluid as fluid
from paddleslim.prune import Pruner
from paddleslim.analysis import flops

from ppdet.utils.eval_utils import parse_fetches, eval_run, eval_results, json_eval_results
import ppdet.utils.checkpoint as checkpoint
from ppdet.utils.check import check_gpu, check_version

from ppdet.data.reader import create_reader

from ppdet.core.workspace import load_config, merge_config, create
from ppdet.utils.cli import ArgsParser

import logging
FORMAT = '%(asctime)s-%(levelname)s: %(message)s'
logging.basicConfig(level=logging.INFO, format=FORMAT)
logger = logging.getLogger(__name__)


def main():
    """
    Main evaluate function
    """
    cfg = load_config(FLAGS.config)
    if 'architecture' in cfg:
        main_arch = cfg.architecture
    else:
        raise ValueError("'architecture' not specified in config file.")

    merge_config(FLAGS.opt)
    # check if set use_gpu=True in paddlepaddle cpu version
    check_gpu(cfg.use_gpu)
    # check if paddlepaddle version is satisfied
    check_version()

    multi_scale_test = getattr(cfg, 'MultiScaleTEST', None)

    # define executor
    place = fluid.CUDAPlace(0) if cfg.use_gpu else fluid.CPUPlace()
    exe = fluid.Executor(place)

    # build program
    model = create(main_arch)
    startup_prog = fluid.Program()
    eval_prog = fluid.Program()
    with fluid.program_guard(eval_prog, startup_prog):
        with fluid.unique_name.guard():
            inputs_def = cfg['EvalReader']['inputs_def']
            feed_vars, loader = model.build_inputs(**inputs_def)
            if multi_scale_test is None:
                fetches = model.eval(feed_vars)
            else:
                fetches = model.eval(feed_vars, multi_scale_test)
    eval_prog = eval_prog.clone(True)

    reader = create_reader(cfg.EvalReader)
    loader.set_sample_list_generator(reader, place)

    dataset = cfg['EvalReader']['dataset']

    # eval already exists json file
    if FLAGS.json_eval:
        logger.info(
            "In json_eval mode, PaddleDetection will evaluate json files in "
            "output_eval directly. And proposal.json, bbox.json and mask.json "
            "will be detected by default.")
        json_eval_results(
            cfg.metric, json_directory=FLAGS.output_eval, dataset=dataset)
        return

    pruned_params = FLAGS.pruned_params
    assert (
        FLAGS.pruned_params is not None
    ), "FLAGS.pruned_params is empty!!! Please set it by '--pruned_params' option."
    pruned_params = FLAGS.pruned_params.strip().split(",")
    logger.info("pruned params: {}".format(pruned_params))
    pruned_ratios = [float(n) for n in FLAGS.pruned_ratios.strip().split(",")]
    logger.info("pruned ratios: {}".format(pruned_ratios))
    assert (len(pruned_params) == len(pruned_ratios)
            ), "The length of pruned params and pruned ratios should be equal."
    assert (pruned_ratios > [0] * len(pruned_ratios) and
            pruned_ratios < [1] * len(pruned_ratios)
            ), "The elements of pruned ratios should be in range (0, 1)."

    base_flops = flops(eval_prog)
    pruner = Pruner()
    eval_prog, _, _ = pruner.prune(
        eval_prog,
        fluid.global_scope(),
        params=pruned_params,
        ratios=pruned_ratios,
        place=place,
        only_graph=True)
    pruned_flops = flops(eval_prog)
    logger.info("pruned FLOPS: {}".format(
        float(base_flops - pruned_flops) / base_flops))

    compile_program = fluid.compiler.CompiledProgram(
        eval_prog).with_data_parallel()

    assert cfg.metric != 'OID', "eval process of OID dataset \
                          is not supported."

    if cfg.metric == "WIDERFACE":
        raise ValueError("metric type {} does not support in tools/eval.py, "
                         "please use tools/face_eval.py".format(cfg.metric))
    assert cfg.metric in ['COCO', 'VOC'], \
            "unknown metric type {}".format(cfg.metric)
    extra_keys = []

    if cfg.metric == 'COCO':
        extra_keys = ['im_info', 'im_id', 'im_shape']
    if cfg.metric == 'VOC':
        extra_keys = ['gt_bbox', 'gt_class', 'is_difficult']

    keys, values, cls = parse_fetches(fetches, eval_prog, extra_keys)

    # whether output bbox is normalized in model output layer
    is_bbox_normalized = False
    if hasattr(model, 'is_bbox_normalized') and \
            callable(model.is_bbox_normalized):
        is_bbox_normalized = model.is_bbox_normalized()

    sub_eval_prog = None
    sub_keys = None
    sub_values = None
    # build sub-program
    if 'Mask' in main_arch and multi_scale_test:
        sub_eval_prog = fluid.Program()
        with fluid.program_guard(sub_eval_prog, startup_prog):
            with fluid.unique_name.guard():
                inputs_def = cfg['EvalReader']['inputs_def']
                inputs_def['mask_branch'] = True
                feed_vars, eval_loader = model.build_inputs(**inputs_def)
                sub_fetches = model.eval(
                    feed_vars, multi_scale_test, mask_branch=True)
                assert cfg.metric == 'COCO'
                extra_keys = ['im_id', 'im_shape']
        sub_keys, sub_values, _ = parse_fetches(sub_fetches, sub_eval_prog,
                                                extra_keys)
        sub_eval_prog = sub_eval_prog.clone(True)

    # load model
    exe.run(startup_prog)
    if 'weights' in cfg:
        checkpoint.load_params(exe, eval_prog, cfg.weights)

    results = eval_run(exe, compile_program, loader, keys, values, cls, cfg,
                       sub_eval_prog, sub_keys, sub_values)

    # evaluation
    resolution = None
    if 'mask' in results[0]:
        resolution = model.mask_head.resolution
    # if map_type not set, use default 11point, only use in VOC eval
    map_type = cfg.map_type if 'map_type' in cfg else '11point'
    eval_results(
        results,
        cfg.metric,
        cfg.num_classes,
        resolution,
        is_bbox_normalized,
        FLAGS.output_eval,
        map_type,
        dataset=dataset)


if __name__ == '__main__':
    parser = ArgsParser()
    parser.add_argument(
        "--json_eval",
        action='store_true',
        default=False,
        help="Whether to re eval with already exists bbox.json or mask.json")
    parser.add_argument(
        "-f",
        "--output_eval",
        default=None,
        type=str,
        help="Evaluation file directory, default is current directory.")

    parser.add_argument(
        "-p",
        "--pruned_params",
        default=None,
        type=str,
        help="The parameters to be pruned when calculating sensitivities.")
    parser.add_argument(
        "--pruned_ratios",
        default=None,
        type=str,
        help="The ratios pruned iteratively for each parameter when calculating sensitivities."
    )

    FLAGS = parser.parse_args()
    main()