Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
793b1858
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
793b1858
编写于
4年前
作者:
K
Kaipeng Deng
提交者:
GitHub
4年前
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add prune/eval.py and update model zoo (#207)
* add prune/eval.py and update model zoo
上级
7eadb565
2 合并请求
!226
Fp16 api upgrade
,
!220
Remove is_difficult field in SSD config for COCO dataset
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
268 addition
and
23 deletion
+268
-23
slim/MODEL_ZOO.md
slim/MODEL_ZOO.md
+4
-0
slim/prune/README.md
slim/prune/README.md
+13
-1
slim/prune/eval.py
slim/prune/eval.py
+229
-0
slim/prune/prune.py
slim/prune/prune.py
+22
-22
未找到文件。
slim/MODEL_ZOO.md
浏览文件 @
793b1858
...
...
@@ -37,6 +37,10 @@
| 骨架网络 | 裁剪策略 | 输入尺寸 | Box AP | 下载 |
| :----------------| :-------: | :------: |:------: | :-----------------------------------------------------: |
| ResNet50-vd-dcn | sensity | 320 | 39.8 |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/prune/yolov3_r50_dcn_prune1x.tar
)
|
| ResNet50-vd-dcn | sensity | 320 | 38.3 |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/prune/yolov3_r50_dcn_prune578.tar
)
|
| MobileNetV1 | sensity | 608 | 30.2 |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/prune/yolov3_mobilenet_v1_prune1x.tar
)
|
| MobileNetV1 | sensity | 416 | 29.7 |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/prune/yolov3_mobilenet_v1_prune1x.tar
)
|
| MobileNetV1 | sensity | 320 | 27.2 |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/prune/yolov3_mobilenet_v1_prune1x.tar
)
|
| MobileNetV1 | r578 | 608 | 27.8 |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/prune/yolov3_mobilenet_v1_prune578.tar
)
|
| MobileNetV1 | r578 | 416 | 26.8 |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/prune/yolov3_mobilenet_v1_prune578.tar
)
|
| MobileNetV1 | r578 | 320 | 24.0 |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/prune/yolov3_mobilenet_v1_prune578.tar
)
|
...
...
This diff is collapsed.
Click to expand it.
slim/prune/README.md
浏览文件 @
793b1858
...
...
@@ -58,7 +58,19 @@ python prune.py \
--pruned_ratios="0.2 0.3 0.4"
```
## 5. 扩展模型
## 5. 评估剪裁模型
训练剪裁任务完成后,可通过
`eval.py`
评估剪裁模型精度,通过
`--pruned_params`
和
`--pruned_ratios`
指定裁剪的参数名称列表和各参数裁剪比例。
```
python eval.py \
-c ../../configs/yolov3_mobilenet_v1_voc.yml \
--pruned_params "yolo_block.0.0.0.conv.weights,yolo_block.0.0.1.conv.weights,yolo_block.0.1.0.conv.weights" \
--pruned_ratios="0.2 0.3 0.4" \
-o weights=output/yolov3_mobilenet_v1_voc/model_final
```
## 6. 扩展模型
如果需要对自己的模型进行修改,可以参考
`prune.py`
中对
`paddleslim.prune.Pruner`
接口的调用方式,基于自己的模型训练脚本进行修改。
本节我们介绍的剪裁示例,需要用户根据先验知识指定每层的剪裁率,除此之外,PaddleSlim还提供了敏感度分析等功能,协助用户选择合适的剪裁率。更多详情请参考:
[
PaddleSlim使用文档
](
https://paddlepaddle.github.io/PaddleSlim/
)
This diff is collapsed.
Click to expand it.
slim/prune/eval.py
0 → 100644
浏览文件 @
793b1858
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
os
def
set_paddle_flags
(
**
kwargs
):
for
key
,
value
in
kwargs
.
items
():
if
os
.
environ
.
get
(
key
,
None
)
is
None
:
os
.
environ
[
key
]
=
str
(
value
)
# NOTE(paddle-dev): All of these flags should be set before
# `import paddle`. Otherwise, it would not take any effect.
set_paddle_flags
(
FLAGS_eager_delete_tensor_gb
=
0
,
# enable GC to save memory
)
import
paddle.fluid
as
fluid
from
paddleslim.prune
import
Pruner
from
paddleslim.analysis
import
flops
from
ppdet.utils.eval_utils
import
parse_fetches
,
eval_run
,
eval_results
,
json_eval_results
import
ppdet.utils.checkpoint
as
checkpoint
from
ppdet.utils.check
import
check_gpu
,
check_version
from
ppdet.data.reader
import
create_reader
from
ppdet.core.workspace
import
load_config
,
merge_config
,
create
from
ppdet.utils.cli
import
ArgsParser
import
logging
FORMAT
=
'%(asctime)s-%(levelname)s: %(message)s'
logging
.
basicConfig
(
level
=
logging
.
INFO
,
format
=
FORMAT
)
logger
=
logging
.
getLogger
(
__name__
)
def
main
():
"""
Main evaluate function
"""
cfg
=
load_config
(
FLAGS
.
config
)
if
'architecture'
in
cfg
:
main_arch
=
cfg
.
architecture
else
:
raise
ValueError
(
"'architecture' not specified in config file."
)
merge_config
(
FLAGS
.
opt
)
# check if set use_gpu=True in paddlepaddle cpu version
check_gpu
(
cfg
.
use_gpu
)
# check if paddlepaddle version is satisfied
check_version
()
multi_scale_test
=
getattr
(
cfg
,
'MultiScaleTEST'
,
None
)
# define executor
place
=
fluid
.
CUDAPlace
(
0
)
if
cfg
.
use_gpu
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
# build program
model
=
create
(
main_arch
)
startup_prog
=
fluid
.
Program
()
eval_prog
=
fluid
.
Program
()
with
fluid
.
program_guard
(
eval_prog
,
startup_prog
):
with
fluid
.
unique_name
.
guard
():
inputs_def
=
cfg
[
'EvalReader'
][
'inputs_def'
]
feed_vars
,
loader
=
model
.
build_inputs
(
**
inputs_def
)
if
multi_scale_test
is
None
:
fetches
=
model
.
eval
(
feed_vars
)
else
:
fetches
=
model
.
eval
(
feed_vars
,
multi_scale_test
)
eval_prog
=
eval_prog
.
clone
(
True
)
reader
=
create_reader
(
cfg
.
EvalReader
)
loader
.
set_sample_list_generator
(
reader
,
place
)
dataset
=
cfg
[
'EvalReader'
][
'dataset'
]
# eval already exists json file
if
FLAGS
.
json_eval
:
logger
.
info
(
"In json_eval mode, PaddleDetection will evaluate json files in "
"output_eval directly. And proposal.json, bbox.json and mask.json "
"will be detected by default."
)
json_eval_results
(
cfg
.
metric
,
json_directory
=
FLAGS
.
output_eval
,
dataset
=
dataset
)
return
pruned_params
=
FLAGS
.
pruned_params
assert
(
FLAGS
.
pruned_params
is
not
None
),
"FLAGS.pruned_params is empty!!! Please set it by '--pruned_params' option."
pruned_params
=
FLAGS
.
pruned_params
.
strip
().
split
(
","
)
logger
.
info
(
"pruned params: {}"
.
format
(
pruned_params
))
pruned_ratios
=
[
float
(
n
)
for
n
in
FLAGS
.
pruned_ratios
.
strip
().
split
(
","
)]
logger
.
info
(
"pruned ratios: {}"
.
format
(
pruned_ratios
))
assert
(
len
(
pruned_params
)
==
len
(
pruned_ratios
)
),
"The length of pruned params and pruned ratios should be equal."
assert
(
pruned_ratios
>
[
0
]
*
len
(
pruned_ratios
)
and
pruned_ratios
<
[
1
]
*
len
(
pruned_ratios
)
),
"The elements of pruned ratios should be in range (0, 1)."
base_flops
=
flops
(
eval_prog
)
pruner
=
Pruner
()
eval_prog
,
_
,
_
=
pruner
.
prune
(
eval_prog
,
fluid
.
global_scope
(),
params
=
pruned_params
,
ratios
=
pruned_ratios
,
place
=
place
,
only_graph
=
True
)
pruned_flops
=
flops
(
eval_prog
)
logger
.
info
(
"pruned FLOPS: {}"
.
format
(
float
(
base_flops
-
pruned_flops
)
/
base_flops
))
compile_program
=
fluid
.
compiler
.
CompiledProgram
(
eval_prog
).
with_data_parallel
()
assert
cfg
.
metric
!=
'OID'
,
"eval process of OID dataset
\
is not supported."
if
cfg
.
metric
==
"WIDERFACE"
:
raise
ValueError
(
"metric type {} does not support in tools/eval.py, "
"please use tools/face_eval.py"
.
format
(
cfg
.
metric
))
assert
cfg
.
metric
in
[
'COCO'
,
'VOC'
],
\
"unknown metric type {}"
.
format
(
cfg
.
metric
)
extra_keys
=
[]
if
cfg
.
metric
==
'COCO'
:
extra_keys
=
[
'im_info'
,
'im_id'
,
'im_shape'
]
if
cfg
.
metric
==
'VOC'
:
extra_keys
=
[
'gt_bbox'
,
'gt_class'
,
'is_difficult'
]
keys
,
values
,
cls
=
parse_fetches
(
fetches
,
eval_prog
,
extra_keys
)
# whether output bbox is normalized in model output layer
is_bbox_normalized
=
False
if
hasattr
(
model
,
'is_bbox_normalized'
)
and
\
callable
(
model
.
is_bbox_normalized
):
is_bbox_normalized
=
model
.
is_bbox_normalized
()
sub_eval_prog
=
None
sub_keys
=
None
sub_values
=
None
# build sub-program
if
'Mask'
in
main_arch
and
multi_scale_test
:
sub_eval_prog
=
fluid
.
Program
()
with
fluid
.
program_guard
(
sub_eval_prog
,
startup_prog
):
with
fluid
.
unique_name
.
guard
():
inputs_def
=
cfg
[
'EvalReader'
][
'inputs_def'
]
inputs_def
[
'mask_branch'
]
=
True
feed_vars
,
eval_loader
=
model
.
build_inputs
(
**
inputs_def
)
sub_fetches
=
model
.
eval
(
feed_vars
,
multi_scale_test
,
mask_branch
=
True
)
assert
cfg
.
metric
==
'COCO'
extra_keys
=
[
'im_id'
,
'im_shape'
]
sub_keys
,
sub_values
,
_
=
parse_fetches
(
sub_fetches
,
sub_eval_prog
,
extra_keys
)
sub_eval_prog
=
sub_eval_prog
.
clone
(
True
)
# load model
exe
.
run
(
startup_prog
)
if
'weights'
in
cfg
:
checkpoint
.
load_params
(
exe
,
eval_prog
,
cfg
.
weights
)
results
=
eval_run
(
exe
,
compile_program
,
loader
,
keys
,
values
,
cls
,
cfg
,
sub_eval_prog
,
sub_keys
,
sub_values
)
# evaluation
resolution
=
None
if
'mask'
in
results
[
0
]:
resolution
=
model
.
mask_head
.
resolution
# if map_type not set, use default 11point, only use in VOC eval
map_type
=
cfg
.
map_type
if
'map_type'
in
cfg
else
'11point'
eval_results
(
results
,
cfg
.
metric
,
cfg
.
num_classes
,
resolution
,
is_bbox_normalized
,
FLAGS
.
output_eval
,
map_type
,
dataset
=
dataset
)
if
__name__
==
'__main__'
:
parser
=
ArgsParser
()
parser
.
add_argument
(
"--json_eval"
,
action
=
'store_true'
,
default
=
False
,
help
=
"Whether to re eval with already exists bbox.json or mask.json"
)
parser
.
add_argument
(
"-f"
,
"--output_eval"
,
default
=
None
,
type
=
str
,
help
=
"Evaluation file directory, default is current directory."
)
parser
.
add_argument
(
"-p"
,
"--pruned_params"
,
default
=
None
,
type
=
str
,
help
=
"The parameters to be pruned when calculating sensitivities."
)
parser
.
add_argument
(
"--pruned_ratios"
,
default
=
None
,
type
=
str
,
help
=
"The ratios pruned iteratively for each parameter when calculating sensitivities."
)
FLAGS
=
parser
.
parse_args
()
main
()
This diff is collapsed.
Click to expand it.
slim/prune/prune.py
浏览文件 @
793b1858
...
...
@@ -115,11 +115,13 @@ def main():
train_values
.
append
(
lr
)
if
FLAGS
.
print_params
:
print
(
"-------------------------All parameters in current graph----------------------"
)
param_delimit_str
=
'-'
*
20
+
"All parameters in current graph"
+
'-'
*
20
print
(
param_delimit_str
)
for
block
in
train_prog
.
blocks
:
for
param
in
block
.
all_parameters
():
print
(
"parameter name: {}
\t
shape: {}"
.
format
(
param
.
name
,
param
.
shape
))
print
(
"------------------------------------------------------------------------------"
)
print
(
"parameter name: {}
\t
shape: {}"
.
format
(
param
.
name
,
param
.
shape
))
print
(
'-'
*
len
(
param_delimit_str
))
return
if
FLAGS
.
eval
:
...
...
@@ -174,19 +176,20 @@ def main():
checkpoint
.
load_checkpoint
(
exe
,
train_prog
,
FLAGS
.
resume_checkpoint
)
start_iter
=
checkpoint
.
global_step
()
elif
cfg
.
pretrain_weights
:
checkpoint
.
load_params
(
exe
,
train_prog
,
cfg
.
pretrain_weights
)
checkpoint
.
load_params
(
exe
,
train_prog
,
cfg
.
pretrain_weights
)
pruned_params
=
FLAGS
.
pruned_params
assert
(
FLAGS
.
pruned_params
is
not
None
),
"FLAGS.pruned_params is empty!!! Please set it by '--pruned_params' option."
assert
FLAGS
.
pruned_params
is
not
None
,
\
"FLAGS.pruned_params is empty!!! Please set it by '--pruned_params' option."
pruned_params
=
FLAGS
.
pruned_params
.
strip
().
split
(
","
)
logger
.
info
(
"pruned params: {}"
.
format
(
pruned_params
))
pruned_ratios
=
[
float
(
n
)
for
n
in
FLAGS
.
pruned_ratios
.
strip
().
split
(
"
"
)]
pruned_ratios
=
[
float
(
n
)
for
n
in
FLAGS
.
pruned_ratios
.
strip
().
split
(
"
,
"
)]
logger
.
info
(
"pruned ratios: {}"
.
format
(
pruned_ratios
))
assert
(
len
(
pruned_params
)
==
len
(
pruned_ratios
)),
"The length of pruned params and pruned ratios should be equal."
assert
(
pruned_ratios
>
[
0
]
*
len
(
pruned_ratios
)
and
pruned_ratios
<
[
1
]
*
len
(
pruned_ratios
)),
"The elements of pruned ratios should be in range (0, 1)."
assert
len
(
pruned_params
)
==
len
(
pruned_ratios
),
\
"The length of pruned params and pruned ratios should be equal."
assert
(
pruned_ratios
>
[
0
]
*
len
(
pruned_ratios
)
and
pruned_ratios
<
[
1
]
*
len
(
pruned_ratios
)
),
"The elements of pruned ratios should be in range (0, 1)."
pruner
=
Pruner
()
train_prog
=
pruner
.
prune
(
...
...
@@ -213,11 +216,11 @@ def main():
place
=
place
,
only_graph
=
True
)[
0
]
pruned_flops
=
flops
(
eval_prog
)
logger
.
info
(
"FLOPs -{}; total FLOPs: {}; pruned FLOPs: {}"
.
format
(
float
(
base_flops
-
pruned_flops
)
/
base_flops
,
base_flops
,
pruned_flops
))
logger
.
info
(
"FLOPs -{}; total FLOPs: {}; pruned FLOPs: {}"
.
format
(
float
(
base_flops
-
pruned_flops
)
/
base_flops
,
base_flops
,
pruned_flops
))
compiled_eval_prog
=
fluid
.
compiler
.
CompiledProgram
(
eval_prog
)
train_reader
=
create_reader
(
cfg
.
TrainReader
,
(
cfg
.
max_iters
-
start_iter
)
*
devices_num
,
cfg
)
train_loader
.
set_sample_list_generator
(
train_reader
,
place
)
...
...
@@ -248,12 +251,10 @@ def main():
tb_loss_step
=
0
tb_mAP_step
=
0
if
FLAGS
.
eval
:
# evaluation
results
=
eval_run
(
exe
,
compiled_eval_prog
,
eval_loader
,
eval_
keys
,
eval_
values
,
eval_cls
)
results
=
eval_run
(
exe
,
compiled_eval_prog
,
eval_loader
,
eval_keys
,
eval_values
,
eval_cls
)
resolution
=
None
if
'mask'
in
results
[
0
]:
resolution
=
model
.
mask_head
.
resolution
...
...
@@ -268,8 +269,6 @@ def main():
map_type
,
dataset
=
dataset
)
for
it
in
range
(
start_iter
,
cfg
.
max_iters
):
start_time
=
end_time
end_time
=
time
.
time
()
...
...
@@ -373,9 +372,10 @@ if __name__ == '__main__':
help
=
"The parameters to be pruned when calculating sensitivities."
)
parser
.
add_argument
(
"--pruned_ratios"
,
default
=
"0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9"
,
default
=
None
,
type
=
str
,
help
=
"The ratios pruned iteratively for each parameter when calculating sensitivities."
)
help
=
"The ratios pruned iteratively for each parameter when calculating sensitivities."
)
parser
.
add_argument
(
"-P"
,
"--print_params"
,
...
...
This diff is collapsed.
Click to expand it.
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录
新手
引导
客服
返回
顶部