optimizer.py 60.0 KB
Newer Older
1
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
16

17
from collections import defaultdict
S
rename  
sneaxiy 已提交
18
from .wrapped_decorator import signature_safe_contextmanager
19

20
from paddle.fluid.framework import Program, Variable, name_scope, default_main_program
Q
Qiao Longfei 已提交
21
from paddle.fluid.distribute_lookup_table import find_distributed_lookup_table
22

23 24
from . import framework
from . import layers
25
from . import unique_name
26
from .backward import append_backward
27
from .clip import append_gradient_clip_ops, error_clip_callback
28 29 30
from .framework import program_guard
from .initializer import Constant
from .layer_helper import LayerHelper
S
sneaxiy 已提交
31
from .layers import ops
32
from .regularizer import append_regularization_ops
M
minqiyang 已提交
33
from .imperative import base as imperative_base
34

35
__all__ = [
Q
qiaolongfei 已提交
36
    'SGD', 'Momentum', 'Adagrad', 'Adam', 'Adamax', 'DecayedAdagrad', 'Ftrl',
37
    'SGDOptimizer', 'MomentumOptimizer', 'AdagradOptimizer', 'AdamOptimizer',
W
weixing02 已提交
38
    'AdamaxOptimizer', 'DecayedAdagradOptimizer', 'RMSPropOptimizer',
39 40
    'FtrlOptimizer', 'Adadelta', 'ModelAverage', 'LarsMomentum',
    'LarsMomentumOptimizer'
41
]
Q
Qiao Longfei 已提交
42 43 44 45 46 47


class Optimizer(object):
    """Optimizer Base class.

    Define the common interface of an optimizer.
48 49
    User should not use this class directly,
    but need to use one of it's implementation.
Q
Qiao Longfei 已提交
50 51
    """

X
Xin Pan 已提交
52
    def __init__(self, learning_rate, regularization=None, name=None):
53
        if not isinstance(learning_rate, float) and \
54 55
                not isinstance(learning_rate, framework.Variable):
            raise TypeError("learning rate should be float or Variable")
W
whs 已提交
56
        self._name = name
D
dzhwinter 已提交
57
        self.regularization = regularization
58
        self._learning_rate = learning_rate
D
dzhwinter 已提交
59 60
        # the learning rate type should be inferenced from loss
        self._dtype = None
61
        # each program should have a independent learning rate
62
        # program -> Variable(learning_rate)
Q
qiaolongfei 已提交
63
        self._learning_rate_map = dict()
64
        if isinstance(self._learning_rate, framework.Variable):
65 66
            self._learning_rate_map[framework.default_main_program(
            )] = self._learning_rate
67 68 69 70 71
        # Dictionary of accumulators. Some optimizer subclasses need to
        # allocate and manage extra variables associated with the parameters
        # to train. These variables are called accumulators.
        # {accum_name : { paramter_name : accumulator_for_parameter, ...}, ...}
        self._accumulators = defaultdict(lambda: dict())
Q
Qiao Longfei 已提交
72
        self.helper = None
73 74 75 76
        self._opti_name_list = []

    def get_opti_var_name_list(self):
        return self._opti_name_list
Q
Qiao Longfei 已提交
77

Q
Qiao Longfei 已提交
78
    def _create_global_learning_rate(self):
Y
yuyang18 已提交
79
        lr = self._global_learning_rate()
Q
Qiao Longfei 已提交
80

81 82 83 84
        if isinstance(lr, framework.Variable):
            return
        else:
            if not isinstance(self._learning_rate, float):
Q
qiaolongfei 已提交
85
                raise TypeError(
86 87
                    "learning rate variable is create outside optimizer,"
                    "can not create new learning rate variable for new program")
Q
Qiao Longfei 已提交
88

89 90 91 92 93 94
        # create learning rate in the current main program
        self._learning_rate_map[framework.default_main_program(
        )] = layers.create_global_var(
            name=unique_name.generate("learning_rate"),
            shape=[1],
            value=float(self._learning_rate),
Q
Qiao Longfei 已提交
95
            dtype='float32' if self._dtype is None else self._dtype,
96 97
            persistable=True)

Y
yuyang18 已提交
98
    def _global_learning_rate(self, program=None):
Q
Qiao Longfei 已提交
99 100 101 102
        """
        get global decayed learning rate
        :return:
        """
103 104
        if program is None:
            program = framework.default_main_program()
Q
qiaolongfei 已提交
105
        return self._learning_rate_map.get(program, None)
Q
Qiao Longfei 已提交
106

Q
Qiao Longfei 已提交
107 108 109 110 111
    def _append_optimize_op(self, block, param_and_grad):
        """ append optimize operator to block and return all the added optimize_op
        """
        raise NotImplementedError()

112 113 114 115
    def _create_param_lr(self, param_and_grad):
        # create learning rate variable for every parameter
        param = param_and_grad[0]
        param_lr = param.optimize_attr['learning_rate']
W
Wu Yi 已提交
116 117
        if type(param_lr) == Variable:
            return param_lr
Q
qiaolongfei 已提交
118
        else:
W
Wu Yi 已提交
119
            if param_lr == 1.0:
Y
yuyang18 已提交
120
                return self._global_learning_rate()
W
Wu Yi 已提交
121
            else:
X
Xin Pan 已提交
122 123 124
                with default_main_program()._lr_schedule_guard(
                        is_with_opt=True), framework.name_scope(
                            'scale_with_param_lr'):
125
                    return self._global_learning_rate() * param_lr
126 127 128 129 130 131 132

    def _create_accumulators(self, block, parameters):
        """Create all accumulators needed by the parameters

        Args:
            block: the block in which the loss variable is present
            parameters: list of parameter variables for the optimizer
Q
Qiao Longfei 已提交
133
        """
134 135
        pass

136
    def _finish_update(self, block, parameters_and_grads):
137 138 139 140 141 142 143 144
        """Finish any custom updates needed
           before completing an optimization step

        Args:
            block: the block in which the loss variable is present
            parameters: list of parameter variables for the optimizer

        Returns:
Q
qiaolongfei 已提交
145
            None
146 147 148
        """
        pass

149 150 151 152 153 154
    def _add_accumulator(self,
                         name,
                         param,
                         dtype=None,
                         fill_value=0.0,
                         shape=None):
155 156 157 158 159 160 161 162 163
        """Utility function to add an accumulator for a parameter

        Args:
            block: the block in which the loss variable is present
            name: name of the accumulator
            param: parameter variable for which accumulator is to be added
            dtype: data type of the accumulator variable
            fill_value: value to initialize the accumulator variable
        """
W
whs 已提交
164 165
        if self._name is not None:
            name = self._name + "_" + name
166 167
        if (name in self._accumulators and
                param.name in self._accumulators[name]):
168
            raise Exception("Accumulator {} already exists for parameter {}".
169
                            format(name, param.name))
170 171
        if shape == None:
            shape = param.shape
Q
Qiao Longfei 已提交
172
        assert isinstance(self.helper, LayerHelper)
173 174 175 176 177

        var_name = param.name + "_" + name
        var_name = unique_name.generate(var_name)
        self._opti_name_list.append(var_name)

Q
Qiao Longfei 已提交
178
        var = self.helper.create_global_variable(
179
            name=var_name,
Q
Qiao Longfei 已提交
180
            persistable=True,
F
fengjiayi 已提交
181
            dtype=dtype or param.dtype,
Q
Qiao Longfei 已提交
182
            type=param.type,
183
            shape=shape)
Q
Qiao Longfei 已提交
184
        self.helper.set_variable_initializer(
185
            var, initializer=Constant(value=float(fill_value)))
Q
Qiao Longfei 已提交
186
        self._accumulators[name][param.name] = var
187
        return var
188 189 190 191 192 193 194 195 196 197 198

    def _get_accumulator(self, name, param):
        """Utility function to fetch an accumulator for a parameter

        Args:
            name: name of the accumulator
            param: parameter variable for which accumulator is to be fetched

        Returns:
            accumulator variable for the parameter
        """
W
whs 已提交
199 200
        if self._name is not None:
            name = self._name + "_" + name
201 202 203 204 205 206
        if (name not in self._accumulators or
                param.name not in self._accumulators[name]):
            raise Exception("Accumulator {} does not exist for parameter {}".
                            format(name, param.name))
        return self._accumulators[name][param.name]

207
    def _create_optimization_pass(self, parameters_and_grads):
Q
Qiao Longfei 已提交
208 209 210
        """Add optimization operators to update gradients to variables.

        Args:
Q
qiaolongfei 已提交
211
          parameters_and_grads(list(tuple(Variable, Variable))):
212
            a list of (variable, gradient) pair to update.
Q
Qiao Longfei 已提交
213 214

        Returns:
215
          return_op_list: a list of operators that will complete one step of
216 217 218
            optimization. This will include parameter update ops, global step
            update ops and any other custom ops required by subclasses to manage
            their internal state.
Q
Qiao Longfei 已提交
219
        """
220 221 222 223 224
        # This is a default implementation of create_optimization_pass that
        # can be shared by most optimizers. This implementation assumes that
        # the subclass will implement the _append_optimize_op method and the
        #  _initialize_tensors method. The subclass can extend the
        # _create_accumulators method if it needs to create accumulators
225
        # for parameters and extend _finish_update method to add custom ops.
226

227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
        # Allways called under program_guard use global block as loss block
        global_block = framework.default_main_program().global_block()
        start = len(global_block.ops)
        self.helper = LayerHelper(self.__class__.__name__)
        self._create_accumulators(global_block,
                                  [p[0] for p in parameters_and_grads])
        self._create_global_learning_rate()

        optimize_ops = []
        for param_and_grad in parameters_and_grads:
            if param_and_grad[1] is None:
                continue
            with param_and_grad[0].block.program._optimized_guard(
                    param_and_grad), name_scope("optimizer"):
                if param_and_grad[0].trainable is True:
                    optimize_op = self._append_optimize_op(global_block,
                                                           param_and_grad)
                    optimize_ops.append(optimize_op)

        # Get custom finish ops for subclasses
        # FIXME: Need to fix this once we figure out how to handle dependencies
        self._finish_update(global_block, parameters_and_grads)

        end = len(global_block.ops)
        return global_block._slice_ops(start, end)

    def _process_distribute_lookuptable(self, param_grads):
Q
Qiao Longfei 已提交
254 255 256 257 258 259 260 261 262
        """
        Because distribute lookup table only support SGD optimizer for now, not support
        other optimizer and regularization, so we should find the table parameter out,
        and avoid to add regularization and other op for it, and add sgd optimize op
        for it independently.
        :param param_grads(list((Var, Var))): list of (param, grad) pair.
        :param loss: the loss variable.
        :param startup_program: the startup program
        """
263 264
        program = framework.default_main_program()
        global_block = framework.default_main_program().global_block()
Q
Qiao Longfei 已提交
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
        table_name = find_distributed_lookup_table(program)
        table_param = None
        table_grad = None
        new_param_grads = []
        for p, g in param_grads:
            if p.name == table_name:
                if table_param is not None:
                    raise RuntimeError(
                        "multi dist table var found, only support one now!")
                table_param = p
                table_grad = g
            else:
                new_param_grads.append((p, g))
        sgd_op = None
        if table_param is not None:
280 281 282 283 284 285 286 287 288 289 290 291 292
            param_and_grad = [table_param, table_grad]
            with table_param.block.program._optimized_guard(param_and_grad), \
                    framework.name_scope("optimizer"):
                self._create_global_learning_rate()
                # create the optimize op
                sgd_op = global_block.append_op(
                    type='sgd',
                    inputs={
                        "Param": table_param,
                        "Grad": table_grad,
                        "LearningRate": self._create_param_lr(param_and_grad)
                    },
                    outputs={"ParamOut": param_and_grad[0]})
Q
Qiao Longfei 已提交
293 294
        return new_param_grads, (table_param, table_grad), sgd_op

295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
    def backward(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
                 no_grad_set=None,
                 callbacks=None):
        """
        First part of `minimize`, do auto-diff to append backward ops for
        the current program.

        Args:
            loss (Variable): loss variable to run optimizations.
            startup_program (Program): startup_program for initializing parameters
                in `parameter_list`.
            parameter_list (list): list of Variables to update.
            no_grad_set (set|None): set of Variables should be ignored.
            callbacks (list|None): list of callables to run when appending backward
                operator for one parameter.
M
minqiyang 已提交
313

314 315
        Return:
            list: list of (param, grad) pair, grad is the output of backward.
M
minqiyang 已提交
316

317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
        Examples:
            See examples in `apply_gradients`.
        """
        if callbacks is None:
            callbacks = [error_clip_callback]
        else:
            assert (isinstance(callbacks, list))
            callbacks.append(error_clip_callback)
        return append_backward(loss, parameter_list, no_grad_set, callbacks)

    def apply_gradients(self, params_grads):
        """
        Second part of `minimize`, appending optimization operators for
        given `params_grads` pairs.

        Args:
            params_grads (list): list of (param, grad) pair to do optimization.
M
minqiyang 已提交
334

335 336
        Returns:
            list: A list of operators appended to the current program.
M
minqiyang 已提交
337

338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
        Examples:
            .. code-block:: python

                loss = network()
                optimizer = fluid.optimizer.SGD(learning_rate=0.1)
                params_grads = optimizer.backward(loss)
                # you may append operations for params_grads here
                # ...
                optimizer.apply_gradients(params_grads)
        """
        params_grads = sorted(params_grads, key=lambda x: x[0].name)

        params_grads, table_param_and_grad, table_optimize_op = \
            self._process_distribute_lookuptable(params_grads)

        params_grads = append_gradient_clip_ops(params_grads)

        # Add regularization if any
        params_grads = append_regularization_ops(params_grads,
                                                 self.regularization)

        optimize_ops = self._create_optimization_pass(params_grads)
        if table_optimize_op is not None:
            optimize_ops.append(table_optimize_op)
            params_grads.append(table_param_and_grad)

        return optimize_ops

Q
Qiao Longfei 已提交
366 367
    def minimize(self,
                 loss,
368
                 startup_program=None,
Q
Qiao Longfei 已提交
369 370
                 parameter_list=None,
                 no_grad_set=None):
371 372 373 374 375
        """
        Add operations to minimize `loss` by updating `parameter_list`.

        This method combines interface `backward()` and
        `apply_gradients()` into one.
M
minqiyang 已提交
376

377 378 379 380 381 382
        Args:
            loss (Variable): loss variable to run optimizations.
            startup_program (Program): startup_program for initializing parameters
                in `parameter_list`.
            parameter_list (list): list of Variables to update.
            no_grad_set (set|None): set of Variables should be ignored.
Q
Qiao Longfei 已提交
383

384 385 386
        Returns:
            tuple: (optimize_ops, params_grads) which are, list of operators appended;
            and list of (param, grad) Variables pair for optimization.
Q
Qiao Longfei 已提交
387
        """
388 389
        self._dtype = loss.dtype
        optimize_ops = []
390
        if framework._in_imperative_mode():
M
minqiyang 已提交
391
            if parameter_list is not None:
M
minqiyang 已提交
392
                parameters = parameter_list
M
minqiyang 已提交
393
            else:
394
                parameters = framework._imperative_tracer().all_parameters()
M
minqiyang 已提交
395 396 397

            params_grads = []
            for param in parameters:
398
                if not param.trainable:
399
                    continue
M
minqiyang 已提交
400 401 402 403 404 405 406
                # create gradient variable
                grad_var = Variable(
                    block=loss.block,
                    name=param._ivar._grad_name(),
                    stop_gradient=True,
                    ivar=param._ivar._grad_ivar())
                params_grads.append((param, grad_var))
407 408
            with program_guard(framework.default_main_program(),
                               framework.default_startup_program()):
409
                optimize_ops = self._create_optimization_pass(params_grads)
M
minqiyang 已提交
410
        else:
411
            program = loss.block.program
412 413 414 415
            with program_guard(program, startup_program):
                params_grads = self.backward(loss, startup_program,
                                             parameter_list, no_grad_set)
                optimize_ops = self.apply_gradients(params_grads)
M
minqiyang 已提交
416

Q
Qiao Longfei 已提交
417
        return optimize_ops, params_grads
Q
Qiao Longfei 已提交
418 419 420


class SGDOptimizer(Optimizer):
Q
qiaolongfei 已提交
421 422 423 424 425 426 427 428 429 430
    """
    Optimizer of the stochastic gradient descent algorithm.

    .. math::

        param\_out = param - learning\_rate * grad

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
X
Xin Pan 已提交
431 432 433
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
Q
qiaolongfei 已提交
434 435 436 437

    Examples:
        .. code-block:: python

Q
qiaolongfei 已提交
438
            sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.2)
Q
qiaolongfei 已提交
439
            sgd_optimizer.minimize(cost)
Q
Qiao Longfei 已提交
440 441
    """

X
Xin Pan 已提交
442
    def __init__(self, learning_rate, regularization=None, name=None):
Q
Qiao Longfei 已提交
443
        assert learning_rate is not None
Q
Qiao Longfei 已提交
444
        super(SGDOptimizer, self).__init__(
X
Xin Pan 已提交
445 446 447
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
Q
Qiao Longfei 已提交
448 449
        self.type = "sgd"

450 451
    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)
452

Q
Qiao Longfei 已提交
453 454 455 456 457 458
        # create the optimize op
        sgd_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
459
                "LearningRate": self._create_param_lr(param_and_grad)
Q
Qiao Longfei 已提交
460
            },
M
minqiyang 已提交
461 462
            outputs={"ParamOut": param_and_grad[0]},
            stop_gradient=True)
Q
Qiao Longfei 已提交
463 464

        return sgd_op
465 466 467


class MomentumOptimizer(Optimizer):
Q
qiaolongfei 已提交
468 469 470 471 472 473 474 475 476 477 478 479 480 481
    """

    Simple Momentum optimizer with velocity state

    This optimizer has a flag for Nestrov Momentum.

    The update equations are as follows:

    .. math::

        & velocity = mu * velocity + gradient

        & if (use\_nesterov):

482
        &\quad   param = param - (gradient + mu * velocity) * learning\_rate
Q
qiaolongfei 已提交
483 484 485

        & else:

Q
qiaolongfei 已提交
486
        &\quad   param = param - learning\_rate * velocity
Q
qiaolongfei 已提交
487 488 489 490 491 492

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
        momentum (float): momentum factor
        use_nesterov (bool): enables Nesterov momentum
X
Xin Pan 已提交
493 494 495
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
Q
qiaolongfei 已提交
496 497 498 499

    Examples:
        .. code-block:: python

Q
qiaolongfei 已提交
500
            optimizer = fluid.optimizer.Momentum(learning_rate=0.2, momentum=0.1)
Q
qiaolongfei 已提交
501
            optimizer.minimize(cost)
502 503 504
    """
    _velocity_acc_str = "velocity"

X
Xin Pan 已提交
505 506 507 508 509 510
    def __init__(self,
                 learning_rate,
                 momentum,
                 use_nesterov=False,
                 regularization=None,
                 name=None):
511 512
        assert learning_rate is not None
        assert momentum is not None
Q
Qiao Longfei 已提交
513
        super(MomentumOptimizer, self).__init__(
X
Xin Pan 已提交
514 515 516
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
517 518
        self.type = "momentum"
        self._momentum = momentum
519
        self._use_nesterov = bool(use_nesterov)
520 521 522 523 524

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
Q
Qiao Longfei 已提交
525
            self._add_accumulator(self._velocity_acc_str, p)
526 527 528 529 530 531 532 533 534 535 536 537 538

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        velocity_acc = self._get_accumulator(self._velocity_acc_str,
                                             param_and_grad[0])
        # create the momentum optimize op
        momentum_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Velocity": velocity_acc,
539
                "LearningRate": self._create_param_lr(param_and_grad)
540 541 542 543 544
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "VelocityOut": velocity_acc
            },
545
            attrs={"mu": self._momentum,
M
minqiyang 已提交
546 547
                   "use_nesterov": self._use_nesterov},
            stop_gradient=True)
548 549

        return momentum_op
550 551


552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
class LarsMomentumOptimizer(Optimizer):
    """
    Momentum optimizer with LARS support

    The update equations are as follows:

    .. math::

        & local\_learning\_rate = learning\_rate * lars\_coeff * \\
          \\frac{||param||}{||gradient|| + lars\_weight\_decay * ||param||}

        & velocity = mu * velocity + local\_learning\_rate * (gradient + lars\_weight\_decay * param)

        & param = param - velocity

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
        momentum (float): momentum factor
        lars_coeff (float): defines how much we trust the layer to change its weights.
        lars_weight_decay (float): weight decay coefficient for decaying using LARS.
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
M
minqiyang 已提交
576

577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631

    Examples:
        .. code-block:: python

            optimizer = fluid.optimizer.LarsMomentum(learning_rate=0.2, momentum=0.1, lars_weight_decay=0.001)
            optimizer.minimize(cost)
    """
    _velocity_acc_str = "velocity"

    def __init__(self,
                 learning_rate,
                 momentum,
                 lars_coeff=0.001,
                 lars_weight_decay=0.0005,
                 regularization=None,
                 name=None):
        assert learning_rate is not None
        assert momentum is not None
        super(LarsMomentumOptimizer, self).__init__(
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
        self.type = "lars_momentum"
        self._momentum = momentum
        self._lars_coeff = float(lars_coeff)
        self._lars_weight_decay = float(lars_weight_decay)

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
            self._add_accumulator(self._velocity_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        velocity_acc = self._get_accumulator(self._velocity_acc_str,
                                             param_and_grad[0])
        # create the momentum optimize op
        momentum_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Velocity": velocity_acc,
                "LearningRate": self._create_param_lr(param_and_grad)
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "VelocityOut": velocity_acc
            },
            attrs={
                "mu": self._momentum,
                "lars_coeff": self._lars_coeff,
                "lars_weight_decay": self._lars_weight_decay
M
minqiyang 已提交
632 633
            },
            stop_gradient=True)
634 635 636 637

        return momentum_op


638
class AdagradOptimizer(Optimizer):
Q
qiaolongfei 已提交
639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658
    """
    **Adaptive Gradient Algorithm (Adagrad)**

    The update is done as follows:

    .. math::

        moment\_out &= moment + grad * grad

        param\_out &= param - \\frac{learning\_rate * grad}{\sqrt{moment\_out} + \epsilon}

    The original paper(http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf)
    does not have the epsilon attribute. It is added here in our implementation
    as also proposed here: http://cs231n.github.io/neural-networks-3/#ada
    for numerical stability to avoid the division by zero error.

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
        epsilon (float): a small float value for numerical stability.
X
Xin Pan 已提交
659 660 661
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
X
xuezhong 已提交
662
        initial_accumulator_value (float): Initial value for moment accumulator.
Q
qiaolongfei 已提交
663 664 665 666 667 668

    Examples:
        .. code-block:: python

            optimizer = fluid.optimizer.Adagrad(learning_rate=0.2)
            optimizer.minimize(cost)
669 670 671
    """
    _moment_acc_str = "moment"

X
Xin Pan 已提交
672 673 674 675
    def __init__(self,
                 learning_rate,
                 epsilon=1.0e-6,
                 regularization=None,
676
                 name=None,
X
xuezhong 已提交
677
                 initial_accumulator_value=0.0):
678 679
        assert learning_rate is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
680
        super(AdagradOptimizer, self).__init__(
X
Xin Pan 已提交
681 682 683
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
684 685
        self.type = "adagrad"
        self._epsilon = epsilon
686
        self.initial_accumulator_value = initial_accumulator_value
687 688 689 690 691

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
Q
Qiao Longfei 已提交
692
            self._add_accumulator(self._moment_acc_str, p)
693 694 695 696 697 698

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment_acc = self._get_accumulator(self._moment_acc_str,
                                           param_and_grad[0])
699 700 701 702 703 704 705 706 707 708
        startup_block = framework.default_startup_program().global_block()
        startup_block.append_op(
            type='fill_constant',
            inputs={},
            outputs={'Out': [moment_acc]},
            attrs={
                'dtype': moment_acc.dtype,
                'value': self.initial_accumulator_value,
                'shape': moment_acc.shape,
            })
709

710
        # Create the adagrad optimizer op
711 712 713 714 715 716
        adagrad_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": moment_acc,
717
                "LearningRate": self._create_param_lr(param_and_grad)
718 719 720
            },
            outputs={"ParamOut": param_and_grad[0],
                     "MomentOut": moment_acc},
M
minqiyang 已提交
721 722
            attrs={"epsilon": self._epsilon},
            stop_gradient=True)
723 724

        return adagrad_op
725 726 727


class AdamOptimizer(Optimizer):
Q
qiaolongfei 已提交
728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
    """
    This implements the Adam optimizer from Section 2 of the Adam
    paper : https://arxiv.org/abs/1412.6980.
    Adam is a first-order gradient-based optimization method based on
    adaptive estimates of lower-order moments.

    Adam updates:

    .. math::

        t & = t + 1

        moment\_1\_out & = {\\beta}_1 * moment\_1 + (1 - {\\beta}_1) * grad

        moment\_2\_out & = {\\beta}_2 * moment\_2 + (1 - {\\beta}_2) * grad * grad

        learning\_rate & = learning\_rate * \\
                          \\frac{\sqrt{1 - {\\beta}_2^t}}{1 - {\\beta}_1^t}

        param\_out & = param - learning\_rate * \\frac{moment\_1}{\sqrt{moment\_2} + \epsilon}

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
        beta1 (float): The exponential decay rate for the 1st moment estimates.
        beta2 (float): The exponential decay rate for the 2nd moment estimates.
        epsilon (float): a small float value for numerical stability.
755
        regularization: A Regularizer, such as fluid.regularizer.L2DecayRegularizer.
X
Xin Pan 已提交
756
        name: A optional name prefix.
757 758 759 760 761 762
        lazy_mode(bool: false): The official Adam algorithm has two moving-average accumulators
        the accumulators are updated at every step. Every element of the two moving-average is updated
        in both dense mode and sparse mode. If the size of parameter is very large, then the update
        may be very slow. The lazy mode only update the element that has gradient is the current
        mini-batch, so it will be much more faster. But this mode has different semantics with the
        original Adam algorithm and may lead to different result.
Q
qiaolongfei 已提交
763 764 765 766 767 768 769

    Examples:
        .. code-block:: python

            optimizer = fluid.optimizer.Adam(learning_rate=0.2)
            optimizer.minimize(cost)

770 771 772
    """
    _moment1_acc_str = "moment1"
    _moment2_acc_str = "moment2"
Q
qiaolongfei 已提交
773 774
    _beta1_pow_acc_str = "beta1_pow_acc"
    _beta2_pow_acc_str = "beta2_pow_acc"
775 776 777 778 779

    def __init__(self,
                 learning_rate=0.001,
                 beta1=0.9,
                 beta2=0.999,
780
                 epsilon=1e-8,
X
Xin Pan 已提交
781
                 regularization=None,
Q
Qiao Longfei 已提交
782
                 name=None,
Q
Qiao Longfei 已提交
783
                 lazy_mode=False):
784 785 786 787
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
788
        super(AdamOptimizer, self).__init__(
X
Xin Pan 已提交
789 790 791
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
792 793 794 795
        self.type = "adam"
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon
Q
Qiao Longfei 已提交
796
        self._lazy_mode = lazy_mode
797 798 799 800 801 802

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        # Create accumulator tensors for first and second moments
        for p in parameters:
Q
Qiao Longfei 已提交
803 804
            self._add_accumulator(self._moment1_acc_str, p)
            self._add_accumulator(self._moment2_acc_str, p)
Q
qiaolongfei 已提交
805 806 807 808 809 810 811 812 813 814 815 816
            self._add_accumulator(
                name=self._beta1_pow_acc_str,
                param=p,
                dtype='float32',
                fill_value=self._beta1,
                shape=[1])
            self._add_accumulator(
                name=self._beta2_pow_acc_str,
                param=p,
                dtype='float32',
                fill_value=self._beta2,
                shape=[1])
817 818 819 820 821 822 823 824

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment1 = self._get_accumulator(self._moment1_acc_str,
                                        param_and_grad[0])
        moment2 = self._get_accumulator(self._moment2_acc_str,
                                        param_and_grad[0])
Q
qiaolongfei 已提交
825 826 827 828 829
        beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                              param_and_grad[0])
        beta2_pow_acc = self._get_accumulator(self._beta2_pow_acc_str,
                                              param_and_grad[0])

830
        # create the adam optimize op
831 832 833 834 835
        adam_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
836
                "LearningRate": self._create_param_lr(param_and_grad),
837 838
                "Moment1": moment1,
                "Moment2": moment2,
Q
qiaolongfei 已提交
839 840
                "Beta1Pow": beta1_pow_acc,
                "Beta2Pow": beta2_pow_acc
841 842 843 844 845 846 847 848 849
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "Moment1Out": moment1,
                "Moment2Out": moment2
            },
            attrs={
                "beta1": self._beta1,
                "beta2": self._beta2,
Q
Qiao Longfei 已提交
850
                "epsilon": self._epsilon,
851 852
                "lazy_mode": self._lazy_mode,
                "min_row_size_to_use_multithread": 1000
M
minqiyang 已提交
853 854
            },
            stop_gradient=True)
855 856 857

        return adam_op

858
    def _finish_update(self, block, param_and_grads):
859 860 861
        """Update Beta1 and Beta2 Power accumulators
        """
        assert isinstance(block, framework.Block)
Q
Qiao Longfei 已提交
862
        main_block = block.program.global_block()
863 864 865
        for param, grad in param_and_grads:
            if grad is None:
                continue
X
Xin Pan 已提交
866 867
            with param.block.program._optimized_guard(
                [param, grad]), name_scope("optimizer"):
868 869 870 871 872 873 874 875
                beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                                      param)
                beta2_pow_acc = self._get_accumulator(self._beta2_pow_acc_str,
                                                      param)
                main_block.append_op(
                    type="scale",
                    inputs={"X": beta1_pow_acc},
                    outputs={"Out": beta1_pow_acc},
M
minqiyang 已提交
876 877
                    attrs={"scale": self._beta1},
                    stop_gradient=True)
878 879 880 881 882

                main_block.append_op(
                    type="scale",
                    inputs={"X": beta2_pow_acc},
                    outputs={"Out": beta2_pow_acc},
M
minqiyang 已提交
883 884
                    attrs={"scale": self._beta2},
                    stop_gradient=True)
885 886 887


class AdamaxOptimizer(Optimizer):
Q
qiaolongfei 已提交
888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917
    """
    We implement the Adamax optimizer from Section 7 of the Adam
    paper: https://arxiv.org/abs/1412.6980. Adamax is a variant of the
    Adam algorithm based on the infinity norm.

    Adamax updates:

    .. math::

        t & = t + 1

        moment\_out & = {\\beta}_1 * moment + (1 - {\\beta}_1) * grad

        inf\_norm\_out & = max({\\beta}_2 * inf\_norm + \epsilon, |grad|)

        learning\_rate & = \\frac{learning\_rate}{1 - {\\beta}_1^t}

        param\_out & = param - learning\_rate * \\frac{moment\_out}{inf\_norm\_out}


    The original paper does not have an epsilon attribute.
    However, it is added here for numerical stability to prevent the
    division by 0 error.

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
        beta1 (float): The exponential decay rate for the 1st moment estimates.
        beta2 (float): The exponential decay rate for the 2nd moment estimates.
        epsilon (float): a small float value for numerical stability.
X
Xin Pan 已提交
918 919 920
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
Q
qiaolongfei 已提交
921 922 923 924 925 926

    Examples:
        .. code-block:: python

            optimizer = fluid.optimizer.Adamax(learning_rate=0.2)
            optimizer.minimize(cost)
C
chengduo 已提交
927 928 929

    Notes:
       Currently, AdamaxOptimizer doesn't support sparse parameter optimization.
930 931 932
    """
    _moment_acc_str = "moment"
    _inf_norm_acc_str = "inf_norm"
Q
qiaolongfei 已提交
933
    _beta1_pow_acc_str = "beta1_pow_acc"
934 935 936 937 938

    def __init__(self,
                 learning_rate=0.001,
                 beta1=0.9,
                 beta2=0.999,
939
                 epsilon=1e-8,
X
Xin Pan 已提交
940 941
                 regularization=None,
                 name=None):
942 943 944 945
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
946
        super(AdamaxOptimizer, self).__init__(
X
Xin Pan 已提交
947 948 949
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
950 951 952 953 954 955 956 957
        self.type = "adamax"
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        # Create accumulator tensors for first moment and infinity norm
        for p in parameters:
Q
Qiao Longfei 已提交
958 959
            self._add_accumulator(self._moment_acc_str, p)
            self._add_accumulator(self._inf_norm_acc_str, p)
Q
qiaolongfei 已提交
960 961 962 963 964 965
            self._add_accumulator(
                name=self._beta1_pow_acc_str,
                param=p,
                dtype='float32',
                fill_value=self._beta1,
                shape=[1])
966 967 968 969 970 971 972

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment = self._get_accumulator(self._moment_acc_str, param_and_grad[0])
        inf_norm = self._get_accumulator(self._inf_norm_acc_str,
                                         param_and_grad[0])
Q
qiaolongfei 已提交
973 974
        beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                              param_and_grad[0])
975 976 977 978 979 980
        # create the adamax optimize op
        adamax_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
981
                "LearningRate": self._create_param_lr(param_and_grad),
982 983
                "Moment": moment,
                "InfNorm": inf_norm,
Q
qiaolongfei 已提交
984
                "Beta1Pow": beta1_pow_acc
985 986 987 988 989 990 991 992 993 994
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "MomentOut": moment,
                "InfNormOut": inf_norm
            },
            attrs={
                "beta1": self._beta1,
                "beta2": self._beta2,
                "epsilon": self._epsilon
M
minqiyang 已提交
995 996
            },
            stop_gradient=True)
997 998 999

        return adamax_op

1000
    def _finish_update(self, block, parameters_and_grads):
1001 1002 1003
        """Update Beta1 Power accumulator
        """
        assert isinstance(block, framework.Block)
Q
Qiao Longfei 已提交
1004
        main_block = block.program.global_block()
1005 1006 1007
        for param, grad in parameters_and_grads:
            if grad is None:
                continue
X
Xin Pan 已提交
1008 1009
            with param.block.program._optimized_guard(
                [param, grad]), name_scope('adamx'):
1010 1011 1012 1013 1014 1015
                beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                                      param)
                main_block.append_op(
                    type="scale",
                    inputs={"X": beta1_pow_acc},
                    outputs={"Out": beta1_pow_acc},
M
minqiyang 已提交
1016 1017
                    attrs={"scale": self._beta1},
                    stop_gradient=True)
1018 1019 1020


class DecayedAdagradOptimizer(Optimizer):
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
    """
    **Decayed Adagrad Optimizer**

    The original paper(http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf)

    The update is done as follows:

    .. math::

        moment\_out & = decay * moment + (1 - decay) * grad * grad

        param\_out & = param - \\frac{learning\_rate * grad}{\sqrt{moment\_out} + \epsilon}

    The original paper(http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf)
    does not have an epsilon attribute. It is added here for numerical
    stability to avoid the division by zero error.

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
        decay (float): decay rate.
        epsilon (float): a small float value for numerical stability.
X
Xin Pan 已提交
1043 1044 1045
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
1046 1047 1048 1049 1050 1051

    Examples:
        .. code-block:: python

            optimizer = fluid.optimizer.DecayedAdagrad(learning_rate=0.2)
            optimizer.minimize(cost)
C
chengduo 已提交
1052 1053 1054

    Notes:
       Currently, DecayedAdagradOptimizer doesn't support sparse parameter optimization.
1055 1056 1057
    """
    _moment_acc_str = "moment"

X
Xin Pan 已提交
1058 1059 1060 1061 1062 1063
    def __init__(self,
                 learning_rate,
                 decay=0.95,
                 epsilon=1.0e-6,
                 regularization=None,
                 name=None):
1064 1065 1066 1067
        assert learning_rate is not None
        assert decay is not None
        assert epsilon is not None

Q
Qiao Longfei 已提交
1068
        super(DecayedAdagradOptimizer, self).__init__(
X
Xin Pan 已提交
1069 1070 1071
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
        self.type = "decayed_adagrad"
        self._decay = decay
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
            self._add_accumulator(self._moment_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment_acc = self._get_accumulator(self._moment_acc_str,
                                           param_and_grad[0])

        # Create the decayed adagrad optimizer op
        decayed_adagrad_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": moment_acc,
                "LearningRate": self._create_param_lr(param_and_grad)
            },
            outputs={"ParamOut": param_and_grad[0],
                     "MomentOut": moment_acc},
M
minqiyang 已提交
1099 1100
            attrs={"epsilon": self._epsilon},
            stop_gradient=True)
1101 1102

        return decayed_adagrad_op
1103 1104


1105
class AdadeltaOptimizer(Optimizer):
1106 1107
    """
    **Adadelta Optimizer**
Q
qiaolongfei 已提交
1108

1109
    Simple Adadelta optimizer with average squared grad state and
1110
    average squared update state.
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
    The details of adadelta please refer to this
    `ADADELTA: AN ADAPTIVE LEARNING RATE METHOD
    <http://www.matthewzeiler.com/pubs/googleTR2012/googleTR2012.pdf>`_.

    ..  math::

        E(g_t^2) &= \\rho * E(g_{t-1}^2) + (1-\\rho) * g^2 \\\\
        learning\\_rate &= sqrt( ( E(dx_{t-1}^2) + \\epsilon ) / ( \\
                          E(g_t^2) + \\epsilon ) ) \\\\
        E(dx_t^2) &= \\rho * E(dx_{t-1}^2) + (1-\\rho) * (-g*learning\\_rate)^2

    Args:
Q
qiaolongfei 已提交
1123
        learning_rate(float): global learning rate
1124 1125
        rho(float): rho in equation
        epsilon(float): epsilon in equation
X
Xin Pan 已提交
1126 1127 1128
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
1129 1130 1131 1132 1133 1134 1135

    Examples:
        .. code-block:: python

            optimizer = fluid.optimizer.Adadelta(
                learning_rate=0.0003, epsilon=1.0e-6, rho=0.95)
            _, params_grads = optimizer.minimize(cost)
C
chengduo 已提交
1136 1137 1138

    Notes:
       Currently, AdadeltaOptimizer doesn't support sparse parameter optimization.
1139
    """
1140

1141 1142 1143
    _avg_squared_grad_acc_str = "_avg_squared_grad"
    _avg_squared_update_acc_str = "_avg_squared_update"

X
Xin Pan 已提交
1144 1145 1146 1147 1148 1149
    def __init__(self,
                 learning_rate,
                 epsilon=1.0e-6,
                 rho=0.95,
                 regularization=None,
                 name=None):
1150 1151 1152 1153 1154 1155
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")
        if epsilon is None:
            raise ValueError("epsilon is not set.")
        if rho is None:
            raise ValueError("rho is not set.")
1156
        super(AdadeltaOptimizer, self).__init__(
X
Xin Pan 已提交
1157 1158 1159
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
1160 1161 1162 1163 1164
        self.type = "adadelta"
        self._epsilon = epsilon
        self._rho = rho

    def _create_accumulators(self, block, parameters):
1165 1166
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")
1167 1168 1169 1170 1171 1172

        for p in parameters:
            self._add_accumulator(self._avg_squared_grad_acc_str, p)
            self._add_accumulator(self._avg_squared_update_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
1173 1174
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195

        avg_squared_grad_acc = self._get_accumulator(
            self._avg_squared_grad_acc_str, param_and_grad[0])
        avg_squared_update_acc = self._get_accumulator(
            self._avg_squared_update_acc_str, param_and_grad[0])

        # Create the adadelta optimizer op
        adadelta_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "AvgSquaredGrad": avg_squared_grad_acc,
                "AvgSquaredUpdate": avg_squared_update_acc
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "AvgSquaredGradOut": avg_squared_grad_acc,
                "AvgSquaredUpdateOut": avg_squared_update_acc
            },
            attrs={"epsilon": self._epsilon,
M
minqiyang 已提交
1196 1197
                   "rho": self._rho},
            stop_gradient=True)
1198 1199 1200 1201

        return adadelta_op


Q
qingqing01 已提交
1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
class RMSPropOptimizer(Optimizer):
    """
    Root Mean Squared Propagation (RMSProp) is an unpublished, adaptive learning
    rate method. The original slides proposed RMSProp: Slide 29 of
    http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf .

    The original equation is as follows:

    ..  math::

Q
qiaolongfei 已提交
1212
        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2
Q
qingqing01 已提交
1213 1214 1215 1216

        w & = w - \\frac{\\eta} {\\sqrt{r(w,t) + \\epsilon}} \\nabla Q_{i}(w)

    The first equation calculates moving average of the squared gradient for
Q
qiaolongfei 已提交
1217
    each weight. Then dividing the gradient by :math:`sqrt{v(w,t)}`.
Q
qingqing01 已提交
1218 1219 1220 1221 1222 1223

    In some cases, adding a momentum term :math: `\\beta` is beneficial.
    In our implementation, Nesterov momentum is used:

    ..  math::

Q
qiaolongfei 已提交
1224
        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2
Q
qingqing01 已提交
1225

1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
        v(w, t) & = \\beta v(w, t-1) + \\frac{\\eta} {\\sqrt{r(w,t) +
            \\epsilon}} \\nabla Q_{i}(w)

        w & = w - v(w, t)

    if centered is True:

    ..  math::

        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2

        g(w, t) & = \\rho g(w, t-1) + (1 - \\rho)\\nabla Q_{i}(w)

        v(w, t) & = \\beta v(w, t-1) + \\frac{\\eta} {\\sqrt{r(w,t) - (g(w, t))^2 +
Q
qingqing01 已提交
1240 1241 1242 1243
            \\epsilon}} \\nabla Q_{i}(w)

        w & = w - v(w, t)

Q
qiaolongfei 已提交
1244
    where, :math:`\\rho` is a hyperparameter and typical values are 0.9, 0.95
Q
qingqing01 已提交
1245 1246 1247 1248 1249 1250
    and so on. :math: `beta` is the momentum term. :math: `\\epsilon` is a
    smoothing term to avoid division by zero, usually set somewhere in range
    from 1e-4 to 1e-8.


    Args:
Q
qiaolongfei 已提交
1251
        learning_rate(float): global learning rate.
Q
qingqing01 已提交
1252 1253 1254
        rho(float): rho is :math: `\\rho` in equation, set 0.95 by default.
        epsilon(float): :math: `\\epsilon` in equation is smoothing term to
            avoid division by zero, set 1e-6 by default.
Q
qiaolongfei 已提交
1255
        momentum(float): :math:`\\beta` in equation is the momentum term,
Q
qingqing01 已提交
1256
            set 0.0 by default.
1257 1258 1259 1260
        centered(bool): If True, gradients are normalized by the estimated variance of
            the gradient; if False, by the uncentered second moment. Setting this to
            True may help with training, but is slightly more expensive in terms of
            computation and memory. Defaults to False.
X
Xin Pan 已提交
1261 1262 1263
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
Q
qingqing01 已提交
1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276

    Raises:
        ValueError: If learning_rate, rho, epsilon, momentum are None.

    Examples:
          .. code-block:: python

              optimizer = fluid.optimizer.RMSProp(0.0001)
              _, params_grads = optimizer.minimize(cost)
    """

    _momentum_acc_str = "momentum"
    _mean_square_acc_str = "mean_square"
1277
    _mean_grad_acc_str = "mean_grad"
Q
qingqing01 已提交
1278 1279 1280 1281 1282 1283

    def __init__(self,
                 learning_rate,
                 rho=0.95,
                 epsilon=1.0e-6,
                 momentum=0.0,
1284
                 centered=False,
X
Xin Pan 已提交
1285 1286
                 regularization=None,
                 name=None):
Q
qingqing01 已提交
1287
        super(RMSPropOptimizer, self).__init__(
X
Xin Pan 已提交
1288 1289 1290
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
Q
qingqing01 已提交
1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")
        if rho is None:
            raise ValueError("rho is not set.")
        if epsilon is None:
            raise ValueError("epsilon is not set.")
        if momentum is None:
            raise ValueError("momentum is not set.")

        self.type = "rmsprop"
        self._rho = rho
        self._epsilon = epsilon
        self._momentum = momentum
1304
        self._centered = centered
Q
qingqing01 已提交
1305 1306 1307 1308 1309 1310 1311 1312

    def _create_accumulators(self, block, parameters):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        for p in parameters:
            self._add_accumulator(self._momentum_acc_str, p)
            self._add_accumulator(self._mean_square_acc_str, p)
1313
            self._add_accumulator(self._mean_grad_acc_str, p)
Q
qingqing01 已提交
1314 1315 1316 1317 1318 1319 1320 1321 1322

    def _append_optimize_op(self, block, param_and_grad):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        momentum_acc = self._get_accumulator(self._momentum_acc_str,
                                             param_and_grad[0])
        mean_square_acc = self._get_accumulator(self._mean_square_acc_str,
                                                param_and_grad[0])
1323 1324
        mean_grad_acc = self._get_accumulator(self._mean_grad_acc_str,
                                              param_and_grad[0])
Q
qingqing01 已提交
1325 1326 1327 1328 1329 1330 1331
        rmsprop_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": momentum_acc,
                "MeanSquare": mean_square_acc,
1332
                "MeanGrad": mean_grad_acc,
Q
qingqing01 已提交
1333 1334 1335 1336 1337
                "LearningRate": self._create_param_lr(param_and_grad),
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "MomentOut": momentum_acc,
1338 1339
                "MeanSquareOut": mean_square_acc,
                "MeanGradOut": mean_grad_acc
Q
qingqing01 已提交
1340 1341 1342 1343
            },
            attrs={
                "epsilon": self._epsilon,
                "decay": self._rho,
1344 1345
                "momentum": self._momentum,
                "centered": self._centered
M
minqiyang 已提交
1346 1347
            },
            stop_gradient=True)
Q
qingqing01 已提交
1348 1349 1350 1351

        return rmsprop_op


Q
qiaolongfei 已提交
1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393
class FtrlOptimizer(Optimizer):
    """
    FTRL (Follow The Regularized Leader) Optimizer.

    The paper that proposed Follow The Regularized Leader (FTRL):
    (https://www.eecs.tufts.edu/~dsculley/papers/ad-click-prediction.pdf)

    ..  math::

        &new\_accum = squared\_accum + grad^2

        &if (lr\_power == -0.5):

        &\quad  linear\_accum += grad - \\frac{\\sqrt{new\_accum} - \\sqrt{squared\_accum}}{learning\_rate * param}

        &else:

        &\quad   linear\_accum += grad - \\frac{new\_accum^{-lr\_power} - accum^{-lr\_power}}{learning\_rate * param}


        &x = l1 * sign(linear\_accum) - linear\_accum

        &if (lr\_power == -0.5):

        &\quad   y = \\frac{\\sqrt{new\_accum}}{learning\_rate} + (2 * l2)

        &\quad   pre\_shrink = \\frac{x}{y}

        &\quad   param = (abs(linear\_accum) > l1).select(pre\_shrink, 0.0)

        &else:

        &\quad   y = \\frac{new\_accum^{-lr\_power}}{learning\_rate} + (2 * l2)

        &\quad   pre\_shrink = \\frac{x}{y}

        &\quad   param = (abs(linear\_accum) > l1).select(pre\_shrink, 0.0)

        &squared\_accum += grad^2

    Args:
        learning_rate (float|Variable): global learning rate.
M
minqiyang 已提交
1394 1395 1396
        l1 (float): L1 regularization strength.
        l2 (float): L2 regularization strength.
        lr_power (float): Learning Rate Power.
X
Xin Pan 已提交
1397 1398 1399
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
Q
qiaolongfei 已提交
1400 1401 1402 1403 1404 1405 1406 1407 1408

    Raises:
        ValueError: If learning_rate, rho, epsilon, momentum are None.

    Examples:
          .. code-block:: python

              optimizer = fluid.optimizer.Ftrl(0.0001)
              _, params_grads = optimizer.minimize(cost)
C
chengduo 已提交
1409 1410 1411

    Notes:
       Currently, FtrlOptimizer doesn't support sparse parameter optimization.
Q
qiaolongfei 已提交
1412 1413 1414 1415 1416
    """

    _squared_acc_str = "squared"
    _linear_acc_str = "linear"

X
Xin Pan 已提交
1417 1418 1419 1420 1421 1422 1423
    def __init__(self,
                 learning_rate,
                 l1=0.0,
                 l2=0.0,
                 lr_power=-0.5,
                 regularization=None,
                 name=None):
Q
qiaolongfei 已提交
1424
        super(FtrlOptimizer, self).__init__(
X
Xin Pan 已提交
1425 1426 1427
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
Q
qiaolongfei 已提交
1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")

        self.type = "ftrl"
        self._l1 = l1
        self._l2 = l2
        self._lr_power = lr_power

    def _create_accumulators(self, block, parameters):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        for p in parameters:
            self._add_accumulator(self._squared_acc_str, p)
            self._add_accumulator(self._linear_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        squared_acc = self._get_accumulator(self._squared_acc_str,
                                            param_and_grad[0])
        linear_acc = self._get_accumulator(self._linear_acc_str,
                                           param_and_grad[0])
        ftrl_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "SquaredAccumulator": squared_acc,
                "LinearAccumulator": linear_acc,
                "LearningRate": self._create_param_lr(param_and_grad),
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "SquaredAccumOut": squared_acc,
                "LinearAccumOut": linear_acc
            },
            attrs={"l1": self._l1,
                   "l2": self._l1,
M
minqiyang 已提交
1468 1469
                   "lr_power": self._lr_power},
            stop_gradient=True)
Q
qiaolongfei 已提交
1470 1471 1472 1473

        return ftrl_op


1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
# We short the class name, since users will use the optimizer with the package
# name. The sample code:
#
# import paddle.fluid as fluid
#
# sgd = fluid.optimizer.SGD(...)
#
# It is no need to add an `Optimizer` as the class suffix
SGD = SGDOptimizer
Momentum = MomentumOptimizer
Adagrad = AdagradOptimizer
Adam = AdamOptimizer
Adamax = AdamaxOptimizer
DecayedAdagrad = DecayedAdagradOptimizer
1488
Adadelta = AdadeltaOptimizer
Q
qingqing01 已提交
1489
RMSProp = RMSPropOptimizer
Q
qiaolongfei 已提交
1490
Ftrl = FtrlOptimizer
1491
LarsMomentum = LarsMomentumOptimizer
1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506


class ModelAverage(Optimizer):
    """Accumulate the average of parameters whtin sliding window. The average
    result will be saved in temporary variables which can be applied to
    parameter variables of current model by calling 'apply()' method. And the
    'restore()' method is used to restored the parameter values of current model.

    The size of average window is determined by average_window_rate,
    min_average_window, max_average_window and current update times.

    Args:
        average_window_rate: The rate of average window.
        min_average_window: The minimum size of average window.
        max_average_window: The maximum size of average window.
X
Xin Pan 已提交
1507 1508 1509
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
1510
    Examples:
Q
qiaolongfei 已提交
1511 1512 1513

      .. code-block:: python

1514
        optimizer = fluid.optimizer.Momentum()
1515 1516
        optimizer.minimize(cost)
        model_average = fluid.optimizer.ModelAverage(0.15,
1517 1518 1519 1520 1521
                                                min_average_window=10000,
                                                max_average_window=20000)
        for pass_id in range(args.pass_num):
            for data in train_reader():
                exe.run(fluid.default_main_program()...)
1522 1523 1524 1525

            with model_average.apply(exe):
                for data in test_reader():
                    exe.run(inference_program...)
1526 1527 1528
    """

    def __init__(self,
W
wanghaoshuang 已提交
1529
                 average_window_rate,
1530 1531
                 min_average_window=10000,
                 max_average_window=10000,
X
Xin Pan 已提交
1532 1533 1534 1535
                 regularization=None,
                 name=None):
        super(ModelAverage, self).__init__(
            0.0, regularization=regularization, name=name)
1536 1537 1538
        self.average_window = average_window_rate
        self.min_average_window = min_average_window
        self.max_average_window = max_average_window
1539

1540
        self.params_grads = []
1541 1542
        for param in framework.default_main_program().global_block(
        ).all_parameters():
1543
            if param.do_model_average != False:
1544 1545 1546 1547
                grad = param.block.create_var(
                    name=unique_name.generate(".".join([param.name, 'tmp'])),
                    dtype=param.dtype,
                    persistable=False,
W
wanghaoshuang 已提交
1548
                    stop_gradient=True)
1549
                self.params_grads.append((param, grad))
1550

1551
        for param, grad in self.params_grads:
1552 1553
            if grad is None:
                continue
X
Xin Pan 已提交
1554 1555
            with param.block.program._optimized_guard(
                [param, grad]), name_scope('move_average'):
1556
                self._append_average_accumulate_op(param)
1557

1558 1559 1560 1561
        self.apply_program = Program()
        block = self.apply_program.global_block()
        with program_guard(main_program=self.apply_program):
            for param_grad in self.params_grads:
1562
                self._add_average_apply_op(block, param_grad)
1563 1564 1565 1566 1567

        self.restore_program = Program()
        block = self.restore_program.global_block()
        with program_guard(main_program=self.restore_program):
            for param_grad in self.params_grads:
1568
                self._add_average_restore_op(block, param_grad)
1569

1570
    def _add_average_apply_op(self, block, param_grad):
L
Luo Tao 已提交
1571 1572 1573 1574 1575 1576
        param = block._clone_variable(param_grad[0])
        grad = block._clone_variable(param_grad[1])
        sum_1 = block._clone_variable(self._get_accumulator('sum_1', param))
        sum_2 = block._clone_variable(self._get_accumulator('sum_2', param))
        sum_3 = block._clone_variable(self._get_accumulator('sum_3', param))
        num_accumulates = block._clone_variable(
1577
            self._get_accumulator('num_accumulates', param))
L
Luo Tao 已提交
1578
        old_num_accumulates = block._clone_variable(
1579
            self._get_accumulator('old_num_accumulates', param))
L
Luo Tao 已提交
1580
        num_updates = block._clone_variable(
1581 1582 1583 1584 1585 1586
            self._get_accumulator('num_updates', param))
        # backup param value to grad
        layers.assign(input=param, output=grad)
        # param = (sum_1 + sum_2 + sum_3) / (num_accumulates + old_num_accumulates)
        tmp = layers.sum(x=[num_accumulates, old_num_accumulates])
        sum = layers.sum(x=[sum_1, sum_2, sum_3])
D
dzhwinter 已提交
1587 1588 1589 1590
        tmp = layers.cast(
            x=tmp, dtype='float32' if self._dtype == None else self._dtype)
        sum = layers.cast(
            x=sum, dtype='float32' if self._dtype == None else self._dtype)
S
sneaxiy 已提交
1591
        ops._elementwise_div(x=sum, y=tmp, out=param)
1592 1593

    def _add_average_restore_op(self, block, param_grad):
L
Luo Tao 已提交
1594 1595
        param = block._clone_variable(param_grad[0])
        grad = block._clone_variable(param_grad[1])
1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632
        layers.assign(input=grad, output=param)

    def _append_average_accumulate_op(self, param):
        self.helper = LayerHelper("average_accumulate")
        sum_1 = self._add_accumulator('sum_1', param)
        sum_2 = self._add_accumulator('sum_2', param)
        sum_3 = self._add_accumulator('sum_3', param)
        num_accumulates = self._add_accumulator(
            'num_accumulates', param, dtype='int64', shape=[1])
        old_num_accumulates = self._add_accumulator(
            'old_num_accumulates', param, dtype='int64', shape=[1])
        num_updates = self._add_accumulator(
            'num_updates', param, dtype='int64', shape=[1])

        self.helper.append_op(
            type='average_accumulates',
            inputs={
                "param": param,
                "in_sum_1": sum_1,
                "in_sum_2": sum_2,
                "in_sum_3": sum_3,
                "in_num_accumulates": num_accumulates,
                "in_old_num_accumulates": old_num_accumulates,
                "in_num_updates": num_updates
            },
            outputs={
                "out_sum_1": sum_1,
                "out_sum_2": sum_2,
                "out_sum_3": sum_3,
                "out_num_accumulates": num_accumulates,
                "out_old_num_accumulates": old_num_accumulates,
                "out_num_updates": num_updates,
            },
            attrs={
                "average_window": self.average_window,
                "min_average_window": self.min_average_window,
                "max_average_window": self.max_average_window,
M
minqiyang 已提交
1633 1634
            },
            stop_gradient=True)
1635

S
rename  
sneaxiy 已提交
1636
    @signature_safe_contextmanager
1637
    def apply(self, executor, need_restore=True):
1638 1639
        """Apply average values to parameters of current model.
        """
1640 1641 1642 1643 1644 1645
        executor.run(self.apply_program)
        try:
            yield
        finally:
            if need_restore:
                self.restore(executor)
1646 1647 1648 1649

    def restore(self, executor):
        """Restore parameter values of current model.
        """
1650
        executor.run(self.restore_program)