conv_transpose_op.cc 10.6 KB
Newer Older
C
chengduoZH 已提交
1 2
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
C
chengduoZH 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
C
chengduoZH 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
C
chengduoZH 已提交
14

C
chengduoZH 已提交
15
#include "paddle/operators/conv_transpose_op.h"
C
chengduoZH 已提交
16 17 18 19

namespace paddle {
namespace operators {

C
chengduoZH 已提交
20
void ConvTransposeOp::InferShape(framework::InferShapeContext* ctx) const {
C
chengduoZH 已提交
21
  PADDLE_ENFORCE(ctx->HasInput("Input"),
C
chengduoZH 已提交
22
                 "Input(Input) of ConvTransposeOp should not be null.");
C
chengduoZH 已提交
23
  PADDLE_ENFORCE(ctx->HasInput("Filter"),
C
chengduoZH 已提交
24
                 "Input(Filter) of ConvTransposeOp should not be null.");
C
chengduoZH 已提交
25
  PADDLE_ENFORCE(ctx->HasOutput("Output"),
C
chengduoZH 已提交
26
                 "Output(Output) of ConvTransposeOp should not be null.");
C
chengduoZH 已提交
27 28 29 30 31

  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
  std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
  std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
C
chengduoZH 已提交
32
  std::vector<int> dilations = ctx->Attrs().Get<std::vector<int>>("dilations");
C
chengduoZH 已提交
33

C
chengduoZH 已提交
34 35 36 37 38 39 40 41 42
  PADDLE_ENFORCE(in_dims.size() == 4 || in_dims.size() == 5,
                 "ConvTransposeOp intput should be 4-D or 5-D tensor.");
  PADDLE_ENFORCE_EQ(in_dims.size(), filter_dims.size(),
                    "ConvTransposeOp input dimension and filter dimension "
                    "should be the same.");
  PADDLE_ENFORCE(in_dims.size() - strides.size() == 2U,
                 "ConvTransposeOp input dimension and strides dimension should "
                 "be consistent.");
  PADDLE_ENFORCE_EQ(paddings.size(), strides.size(),
C
chengduoZH 已提交
43
                    "ConvTransposeOp paddings dimension and strides "
C
chengduoZH 已提交
44
                    "dimension should be the same.");
C
chengduoZH 已提交
45 46 47
  PADDLE_ENFORCE_EQ(paddings.size(), dilations.size(),
                    "ConvTransposeOp paddings dimension and dilations "
                    "dimension should be the same.");
C
chengduoZH 已提交
48 49 50
  PADDLE_ENFORCE_EQ(in_dims[1], filter_dims[0],
                    "In ConvTransposeOp, The input channel should be the same "
                    "as the number of filters.");
C
chengduoZH 已提交
51

C
chengduoZH 已提交
52
  std::vector<int64_t> output_shape({in_dims[0], filter_dims[1]});
C
chengduoZH 已提交
53
  for (size_t i = 0; i < strides.size(); ++i) {
C
chengduoZH 已提交
54
    auto filter_extent = dilations[i] * (filter_dims[i + 2] - 1) + 1;
C
chengduoZH 已提交
55
    output_shape.push_back((in_dims[i + 2] - 1) * strides[i] - 2 * paddings[i] +
C
chengduoZH 已提交
56
                           filter_extent);
C
chengduoZH 已提交
57
  }
C
chengduoZH 已提交
58
  ctx->SetOutputDim("Output", framework::make_ddim(output_shape));
C
chengduoZH 已提交
59 60
}

61 62
Conv2DTransposeOpMaker::Conv2DTransposeOpMaker(OpProto* proto,
                                               OpAttrChecker* op_checker)
C
chengduoZH 已提交
63 64 65 66 67
    : OpProtoAndCheckerMaker(proto, op_checker) {
  AddInput(
      "Input",
      "(Tensor) The input tensor of convolution transpose operator. "
      "The format of input tensor is NCHW. Where N is batch size, C is the "
C
chengduoZH 已提交
68 69
      "number of input channels, H is the height of the feature, and "
      "W is the width of the feature.");
C
chengduoZH 已提交
70 71 72 73 74 75 76 77
  AddInput(
      "Filter",
      "(Tensor) The filter tensor of convolution transpose operator. "
      "The format of the filter tensor is MCHW, where M is the number of "
      "input feature channels, C is the number of "
      "output feature channels,"
      "H is the height of the filter, and W is the width of the filter. "
      "We enforce groups number == 1 in the convolution transpose scenario.");
C
chengduoZH 已提交
78
  AddOutput("Output",
C
chengduoZH 已提交
79
            "(Tensor) The output tensor of convolution transpose operator. "
C
chengduoZH 已提交
80
            "The format of output tensor is also NCHW.");
C
chengduoZH 已提交
81 82 83 84 85 86

  AddAttr<std::vector<int>>("dilations",
                            "(vector<int> default:{1, 1}), the "
                            "dilations(h_dilation, w_dilation) of convolution "
                            "transpose operator.")
      .SetDefault({1, 1});
C
chengduoZH 已提交
87 88
  AddAttr<std::vector<int>>(
      "strides",
C
chengduoZH 已提交
89
      "(vector<int> default:{1, 1}), the strides(h_stride, w_stride) of "
90
      "convolution transpose operator.")
C
chengduoZH 已提交
91
      .SetDefault({1, 1});
C
chengduoZH 已提交
92 93
  AddAttr<std::vector<int>>(
      "paddings",
C
chengduoZH 已提交
94
      "(vector<int> default:{0, 0}), the paddings(h_pad, w_pad) of convolution "
C
chengduoZH 已提交
95
      "transpose operator.")
C
chengduoZH 已提交
96 97
      .SetDefault({0, 0});
  AddComment(R"DOC(
C
chengduoZH 已提交
98 99
Convolution2D Transpose Operator.

C
chengduoZH 已提交
100
The convolution transpose operation calculates the output based on the input, filter
C
chengduoZH 已提交
101
and dilations, strides, paddings, groups parameters. The size of each dimension of the
C
chengduoZH 已提交
102
parameters is checked in the infer-shape.
C
chengduoZH 已提交
103 104 105 106 107 108 109
Input(Input) and output(Output) are in NCHW format. Where N is batchsize, C is the
number of channels, H is the height of the feature, and W is the width of the feature.
Filter(Input) is in MCHW format. Where M is the number of input feature channels,
C is the number of output feature channels, H is the height of the filter,
and W is the width of the filter.
Parameters(strides, paddings) are two elements. These two elements represent height
and width, respectively.
C
chengduoZH 已提交
110
The input(X) size and output(Out) size may be different.
C
chengduoZH 已提交
111

C
chengduoZH 已提交
112 113
Example:
  Input:
C
chengduoZH 已提交
114 115
       Input shape: $(N, C_{in}, H_{in}, W_{in})$
       Filter shape: $(C_{in}, C_{out}, H_f, W_f)$
C
chengduoZH 已提交
116
  Output:
C
chengduoZH 已提交
117 118 119 120 121 122
       Output shape: $(N, C_{out}, H_{out}, W_{out})$
  Where
  $$
       H_{out} = (H_{in} - 1) * strides[0] - 2 * paddings[0] + H_f \\
       W_{out} = (W_{in} - 1) * strides[1] - 2 * paddings[1] + W_f
  $$
C
chengduoZH 已提交
123 124 125
)DOC");
}

126 127
Conv3DTransposeOpMaker::Conv3DTransposeOpMaker(OpProto* proto,
                                               OpAttrChecker* op_checker)
C
chengduoZH 已提交
128
    : OpProtoAndCheckerMaker(proto, op_checker) {
C
chengduoZH 已提交
129 130 131 132 133 134
  AddInput("Input",
           "(Tensor) The input tensor of convolution transpose operator."
           "The format of input tensor is NCDHW. Where N is batch size, C is "
           "the number of channels, D is the depth of the feature, H is the "
           "height of the feature, and "
           "W is the width of the feature.");
C
chengduoZH 已提交
135 136
  AddInput("Filter",
           "(Tensor) The filter tensor of convolution transpose operator."
C
chengduoZH 已提交
137 138 139
           "The format of the filter tensor is MCDHW, where M is the number of "
           "input feature channels, C is the number of "
           "output feature channels, D "
C
chengduoZH 已提交
140 141
           "is the depth of the filter, H is the height of the filter, and "
           "W is the width of the filter."
C
chengduoZH 已提交
142
           "We enforce groups number == 1 and padding == 0 in "
C
chengduoZH 已提交
143
           "the convolution3d transpose scenario.");
C
chengduoZH 已提交
144 145 146 147
  AddOutput("Output",
            "(Tensor) The output tensor of convolution transpose operator."
            "The format of output tensor is also NCDHW."
            "Where N is batch size, C is "
C
chengduoZH 已提交
148 149
            "the number of channels, D is the depth of the feature, H is the "
            "height of the feature, and W is the width of the feature.");
C
chengduoZH 已提交
150 151 152 153 154 155 156

  AddAttr<std::vector<int>>(
      "dilations",
      "(vector<int> default:{1, 1, 1}), the "
      "dilations(d_dilation,h_dilation, w_dilation) of convolution "
      "transpose operator.")
      .SetDefault({1, 1, 1});
C
chengduoZH 已提交
157
  AddAttr<std::vector<int>>("strides",
C
chengduoZH 已提交
158
                            "(vector<int> default:{1, 1, 1}), the "
159
                            "strides{d_stride, h_stride, w_stride} of "
C
chengduoZH 已提交
160
                            "convolution transpose operator.")
C
chengduoZH 已提交
161
      .SetDefault({1, 1, 1});
C
chengduoZH 已提交
162
  AddAttr<std::vector<int>>("paddings",
C
chengduoZH 已提交
163
                            "(vector<int> default:{0, 0, 0}), paddings(d_pad, "
C
chengduoZH 已提交
164
                            "h_pad, w_pad) of convolution transpose operator.")
C
chengduoZH 已提交
165 166
      .SetDefault({0, 0, 0});
  AddComment(R"DOC(
C
chengduoZH 已提交
167 168
Convolution3D Transpose Operator.

C
chengduoZH 已提交
169
The convolution transpose operation calculates the output based on the input, filter
C
chengduoZH 已提交
170
and dilations, strides, paddings, groups parameters. The size of each dimension of the
C
chengduoZH 已提交
171
parameters is checked in the infer-shape.
C
chengduoZH 已提交
172 173 174 175 176 177 178 179
Input(Input) and output(Output) are in NCDHW format. Where N is batch size, C is the
number of channels, D is the depth of the feature, H is the height of the feature,
and W is the width of the feature.
Filter(Input) is in MCDHW format. Where M is the number of input feature channels,
C is the number of output feature channels, D is the depth of the filter,H is the
height of the filter, and W is the width of the filter.
Parameters(strides, paddings) are three elements. These three elements represent
depth, height and width, respectively.
C
chengduoZH 已提交
180
The input(X) size and output(Out) size may be different.
C
chengduoZH 已提交
181 182

Example:   
C
chengduoZH 已提交
183
  Input:
C
chengduoZH 已提交
184 185
       Input shape: $(N, C_{in}, D_{in}, H_{in}, W_{in})$
       Filter shape: $(C_{in}, C_{out}, D_f, H_f, W_f)$
C
chengduoZH 已提交
186
  Output:
C
chengduoZH 已提交
187 188 189 190 191 192 193
       Output shape: $(N, C_{out}, D_{out}, H_{out}, W_{out})$
  Where
  $$
       D_{out} = (D_{in} - 1) * strides[0] - 2 * paddings[0] + D_f \\
       H_{out} = (H_{in} - 1) * strides[1] - 2 * paddings[1] + H_f \\
       W_{out} = (W_{in} - 1) * strides[2] - 2 * paddings[2] + W_f
  $$
C
chengduoZH 已提交
194 195 196
)DOC");
}

C
chengduoZH 已提交
197
void ConvTransposeOpGrad::InferShape(framework::InferShapeContext* ctx) const {
C
chengduoZH 已提交
198 199 200 201 202 203 204 205 206 207 208 209 210 211
  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
  if (ctx->HasOutput(framework::GradVarName("Input"))) {
    ctx->SetOutputDim(framework::GradVarName("Input"), in_dims);
  }
  if (ctx->HasOutput(framework::GradVarName("Filter"))) {
    ctx->SetOutputDim(framework::GradVarName("Filter"), filter_dims);
  }
}

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
C
chengduoZH 已提交
212

C
chengduoZH 已提交
213 214
REGISTER_OP(conv2d_transpose, ops::ConvTransposeOp, ops::Conv2DTransposeOpMaker,
            conv2d_transpose_grad, ops::ConvTransposeOpGrad);
C
chengduoZH 已提交
215 216

REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
217
    conv2d_transpose,
Q
QI JUN 已提交
218 219
    ops::GemmConvTransposeKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvTransposeKernel<paddle::platform::CPUDeviceContext, double>);
C
chengduoZH 已提交
220
REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
221
    conv2d_transpose_grad,
Q
QI JUN 已提交
222 223 224
    ops::GemmConvTransposeGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvTransposeGradKernel<paddle::platform::CPUDeviceContext,
                                     double>);
C
chengduoZH 已提交
225

C
chengduoZH 已提交
226 227
REGISTER_OP(conv3d_transpose, ops::ConvTransposeOp, ops::Conv3DTransposeOpMaker,
            conv3d_transpose_grad, ops::ConvTransposeOpGrad);
C
chengduoZH 已提交
228 229

REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
230
    conv3d_transpose,
Q
QI JUN 已提交
231 232
    ops::GemmConvTransposeKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvTransposeKernel<paddle::platform::CPUDeviceContext, double>);
C
chengduoZH 已提交
233
REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
234
    conv3d_transpose_grad,
Q
QI JUN 已提交
235 236 237
    ops::GemmConvTransposeGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvTransposeGradKernel<paddle::platform::CPUDeviceContext,
                                     double>);