conv_transpose_op.cc 9.1 KB
Newer Older
C
chengduoZH 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

C
chengduoZH 已提交
15
#include "paddle/operators/conv_transpose_op.h"
C
chengduoZH 已提交
16 17 18 19

namespace paddle {
namespace operators {

C
chengduoZH 已提交
20
void ConvTransposeOp::InferShape(framework::InferShapeContext* ctx) const {
C
chengduoZH 已提交
21
  PADDLE_ENFORCE(ctx->HasInput("Input"),
C
chengduoZH 已提交
22
                 "Input(Input) of ConvTransposeOp should not be null.");
C
chengduoZH 已提交
23
  PADDLE_ENFORCE(ctx->HasInput("Filter"),
C
chengduoZH 已提交
24
                 "Input(Filter) of ConvTransposeOp should not be null.");
C
chengduoZH 已提交
25
  PADDLE_ENFORCE(ctx->HasOutput("Output"),
C
chengduoZH 已提交
26
                 "Output(Output) of ConvTransposeOp should not be null.");
C
chengduoZH 已提交
27 28 29 30 31 32 33 34 35 36 37

  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
  std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
  std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");

  for (size_t i = 0; i < paddings.size(); ++i) {
    PADDLE_ENFORCE_EQ(paddings[i], 0,
                      "No Padding allowed in conv transpose op.");
  }

C
chengduoZH 已提交
38 39 40 41 42 43 44 45 46 47 48
  PADDLE_ENFORCE(in_dims.size() == 4 || in_dims.size() == 5,
                 "ConvTransposeOp intput should be 4-D or 5-D tensor.");
  PADDLE_ENFORCE_EQ(in_dims.size(), filter_dims.size(),
                    "ConvTransposeOp input dimension and filter dimension "
                    "should be the same.");
  PADDLE_ENFORCE(in_dims.size() - strides.size() == 2U,
                 "ConvTransposeOp input dimension and strides dimension should "
                 "be consistent.");
  PADDLE_ENFORCE_EQ(paddings.size(), strides.size(),
                    "ConvTransposeOp paddings dimension and Conv strides "
                    "dimension should be the same.");
C
chengduoZH 已提交
49 50 51
  PADDLE_ENFORCE_EQ(in_dims[1], filter_dims[0],
                    "In ConvTransposeOp, The input channel should be the same "
                    "as the number of filters.");
C
chengduoZH 已提交
52

C
chengduoZH 已提交
53
  std::vector<int64_t> output_shape({in_dims[0], filter_dims[1]});
C
chengduoZH 已提交
54
  for (size_t i = 0; i < strides.size(); ++i) {
C
chengduoZH 已提交
55 56 57
    output_shape.push_back((in_dims[i + 2] - 1) * strides[i] +
                           filter_dims[i + 2]);
  }
C
chengduoZH 已提交
58
  ctx->SetOutputDim("Output", framework::make_ddim(output_shape));
C
chengduoZH 已提交
59 60
}

C
chengduoZH 已提交
61 62 63 64 65 66 67
Conv2DTransposeOpMaker::Conv2DTransposeOpMaker(
    framework::OpProto* proto, framework::OpAttrChecker* op_checker)
    : OpProtoAndCheckerMaker(proto, op_checker) {
  AddInput(
      "Input",
      "(Tensor) The input tensor of convolution transpose operator. "
      "The format of input tensor is NCHW. Where N is batch size, C is the "
C
chengduoZH 已提交
68 69
      "number of input channels, H is the height of the feature, and "
      "W is the width of the feature.");
C
chengduoZH 已提交
70
  AddInput("Filter",
C
chengduoZH 已提交
71
           "(Tensor) The filter tensor of convolution transpose operator. "
C
chengduoZH 已提交
72 73
           "The format of the filter tensor is CMHW, where C is the number of "
           "output image channels, M is the number of input image channels, "
C
chengduoZH 已提交
74
           "H is the height of the filter, and W is the width of the filter. "
C
chengduoZH 已提交
75
           "We enforce groups number == 1 and padding == 0 in "
C
chengduoZH 已提交
76
           "the convolution transpose scenario.");
C
chengduoZH 已提交
77
  AddOutput("Output",
C
chengduoZH 已提交
78
            "(Tensor) The output tensor of convolution transpose operator. "
C
chengduoZH 已提交
79
            "The format of output tensor is also NCHW.");
C
chengduoZH 已提交
80 81
  AddAttr<std::vector<int>>(
      "strides",
82 83
      "(vector<int> defalut:{1, 1}), the strides(h_stride, w_stride) of "
      "convolution transpose operator.")
C
chengduoZH 已提交
84
      .SetDefault({1, 1});
C
chengduoZH 已提交
85 86
  AddAttr<std::vector<int>>(
      "paddings",
87
      "(vector<int> defalut:{0, 0}), the paddings(h_pad, w_pad) of convolution "
C
chengduoZH 已提交
88
      "transpose operator.")
C
chengduoZH 已提交
89 90
      .SetDefault({0, 0});
  AddComment(R"DOC(
C
chengduoZH 已提交
91 92
Convolution2D Transpose Operator.

C
chengduoZH 已提交
93 94 95
The convolution transpose operation calculates the output based on the input, filter
and strides, paddings, groups parameters. The size of each dimension of the
parameters is checked in the infer-shape.
C
chengduoZH 已提交
96 97

Input(Input, Filter) and output(Output) are in NCHW format. Where N is batch
C
chengduoZH 已提交
98 99
size, C is the number of channels, H is the height of the feature, and 
W is the width of the feature. Parameters(ksize, strides, paddings) are two elements.
C
chengduoZH 已提交
100 101 102 103 104 105 106 107 108 109 110
These two elements represent height and width, respectively.
The input(X) size and output(Out) size may be different.
Example:
  Input:
       Input shape: (N, C_in, H_in, W_in)
       Filter shape: (C_in, C_out, H_f, W_f)
  Output:
       Output shape: (N, C_out, H_out, W_out)
  where
       H_out = (H_in - 1) * strides[0] - 2 * paddings[0] + filter_size[0];
       W_out = (W_in - 1) * strides[1] - 2 * paddings[1] + filter_size[1];
C
chengduoZH 已提交
111 112 113
)DOC");
}

C
chengduoZH 已提交
114 115 116
Conv3DTransposeOpMaker::Conv3DTransposeOpMaker(
    framework::OpProto* proto, framework::OpAttrChecker* op_checker)
    : OpProtoAndCheckerMaker(proto, op_checker) {
C
chengduoZH 已提交
117 118 119 120 121 122
  AddInput("Input",
           "(Tensor) The input tensor of convolution transpose operator."
           "The format of input tensor is NCDHW. Where N is batch size, C is "
           "the number of channels, D is the depth of the feature, H is the "
           "height of the feature, and "
           "W is the width of the feature.");
C
chengduoZH 已提交
123 124 125
  AddInput("Filter",
           "(Tensor) The filter tensor of convolution transpose operator."
           "The format of the filter tensor is CMDHW, where C is the number of "
C
chengduoZH 已提交
126 127 128
           "output image channels, M is the number of input image channels, D "
           "is the depth of the filter, H is the height of the filter, and "
           "W is the width of the filter."
C
chengduoZH 已提交
129
           "We enforce groups number == 1 and padding == 0 in "
C
chengduoZH 已提交
130
           "the convolution3d transpose scenario.");
C
chengduoZH 已提交
131 132 133 134
  AddOutput("Output",
            "(Tensor) The output tensor of convolution transpose operator."
            "The format of output tensor is also NCDHW."
            "Where N is batch size, C is "
C
chengduoZH 已提交
135 136
            "the number of channels, D is the depth of the feature, H is the "
            "height of the feature, and W is the width of the feature.");
C
chengduoZH 已提交
137
  AddAttr<std::vector<int>>("strides",
138 139
                            "(vector<int> defalut:{1, 1, 1}), the "
                            "strides{d_stride, h_stride, w_stride} of "
C
chengduoZH 已提交
140
                            "convolution transpose operator.")
C
chengduoZH 已提交
141
      .SetDefault({1, 1, 1});
C
chengduoZH 已提交
142 143 144
  AddAttr<std::vector<int>>("paddings",
                            "(vector<int> defalut:{0, 0, 0}), paddings(d_pad, "
                            "h_pad, w_pad) of convolution transpose operator.")
C
chengduoZH 已提交
145 146
      .SetDefault({0, 0, 0});
  AddComment(R"DOC(
C
chengduoZH 已提交
147 148
Convolution3D Transpose Operator.

C
chengduoZH 已提交
149 150 151
The convolution transpose operation calculates the output based on the input, filter
and strides, paddings, groups parameters. The size of each dimension of the
parameters is checked in the infer-shape.
C
chengduoZH 已提交
152 153

Input(Input, Filter) and output(Output) are in NCDHW format. Where N is batch
C
chengduoZH 已提交
154 155 156
size, C is the number of channels, D is the depth of the feature, 
H is the height of the feature, and W is the width of the feature. 
Parameters(ksize, strides, paddings) are three elements.
C
chengduoZH 已提交
157 158 159 160 161 162 163 164 165 166 167 168
These three elements represent depth, height and width, respectively.
The input(X) size and output(Out) size may be different.
Example:
  Input:
       Input shape: (N, C_in, D_in, H_in, W_in)
       Filter shape: (C_in, C_out, D_f, H_f, W_f)
  Output:
       Output shape: (N, C_out, D_out, H_out, W_out)
  where
       D_out = (D_in - 1) * strides[0] - 2 * paddings[0] + filter_size[0];
       H_out = (H_in - 1) * strides[1] - 2 * paddings[1] + filter_size[1];
       W_out = (W_in - 1) * strides[2] - 2 * paddings[2] + filter_size[2];
C
chengduoZH 已提交
169 170 171
)DOC");
}

C
chengduoZH 已提交
172
void ConvTransposeOpGrad::InferShape(framework::InferShapeContext* ctx) const {
C
chengduoZH 已提交
173 174 175 176 177 178 179 180 181 182 183 184 185 186
  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
  if (ctx->HasOutput(framework::GradVarName("Input"))) {
    ctx->SetOutputDim(framework::GradVarName("Input"), in_dims);
  }
  if (ctx->HasOutput(framework::GradVarName("Filter"))) {
    ctx->SetOutputDim(framework::GradVarName("Filter"), filter_dims);
  }
}

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
C
chengduoZH 已提交
187

C
chengduoZH 已提交
188 189
REGISTER_OP(conv2d_transpose, ops::ConvTransposeOp, ops::Conv2DTransposeOpMaker,
            conv2d_transpose_grad, ops::ConvTransposeOpGrad);
C
chengduoZH 已提交
190 191

REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
192
    conv2d_transpose,
193
    ops::GemmConvTransposeKernel<paddle::platform::CPUPlace, float>);
C
chengduoZH 已提交
194
REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
195
    conv2d_transpose_grad,
196
    ops::GemmConvTransposeGradKernel<paddle::platform::CPUPlace, float>);
C
chengduoZH 已提交
197

C
chengduoZH 已提交
198 199
REGISTER_OP(conv3d_transpose, ops::ConvTransposeOp, ops::Conv3DTransposeOpMaker,
            conv3d_transpose_grad, ops::ConvTransposeOpGrad);
C
chengduoZH 已提交
200 201

REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
202
    conv3d_transpose,
203
    ops::GemmConvTransposeKernel<paddle::platform::CPUPlace, float>);
C
chengduoZH 已提交
204
REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
205
    conv3d_transpose_grad,
206
    ops::GemmConvTransposeGradKernel<paddle::platform::CPUPlace, float>);