tracer.cc 9.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/imperative/tracer.h"

M
minqiyang 已提交
17 18 19 20
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/enforce.h"

21
namespace paddle {
M
minqiyang 已提交
22 23 24 25 26
namespace imperative {

void CreateGradOp(const framework::OpDesc& op_desc,
                  const std::unordered_set<std::string>& no_grad_set,
                  const std::vector<framework::BlockDesc*>& grad_sub_block,
X
Xin Pan 已提交
27
                  std::vector<framework::OpDesc*>* grad_op_descs,
M
minqiyang 已提交
28
                  std::unordered_map<std::string, std::string>* grad_to_var) {
X
Xin Pan 已提交
29 30
  PADDLE_ENFORCE(grad_op_descs->empty());
  std::vector<std::unique_ptr<framework::OpDesc>> descs =
M
minqiyang 已提交
31 32 33
      framework::OpInfoMap::Instance()
          .Get(op_desc.Type())
          .GradOpMaker()(op_desc, no_grad_set, grad_to_var, grad_sub_block);
J
JiabinYang 已提交
34

X
Xin Pan 已提交
35 36 37
  for (auto& desc : descs) {
    grad_op_descs->emplace_back(desc.release());
  }
M
minqiyang 已提交
38 39
}

M
minqiyang 已提交
40 41 42 43
void InitVar(framework::Variable* var, framework::Variable* grad_var,
             platform::DeviceContext* dev_ctx) {
  PADDLE_ENFORCE_NOT_NULL(dev_ctx,
                          "Could not get valid device from forward op");
M
minqiyang 已提交
44
  auto& var_t = var->Get<framework::LoDTensor>();
M
minqiyang 已提交
45 46 47
  grad_var->GetMutable<framework::LoDTensor>()->mutable_data<float>(
      var_t.dims(), dev_ctx->GetPlace());
  operators::math::set_constant(
M
minqiyang 已提交
48
      *dev_ctx, grad_var->GetMutable<framework::LoDTensor>(), 0.0);
M
minqiyang 已提交
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
}

platform::Place GetExpectedPlace(platform::Place place, VarBasePtrMap inputs) {
  platform::Place result = place;
  for (auto it : inputs) {
    for (VarBase* var : it.second) {
      platform::Place tmp_place =
          var->var_->Get<framework::LoDTensor>().place();
      if (!platform::is_same_place(tmp_place, result)) {
        PADDLE_THROW(
            "Input variable should keep in the same place: %s, but get place: "
            "%s of input %s instead",
            result, tmp_place, it.first);
      }
    }
  }

  return result;
M
minqiyang 已提交
67 68 69 70
}

void Tracer::Trace(OpBase* op, const VarBasePtrMap& inputs,
                   const VarBasePtrMap& outputs, framework::BlockDesc* block,
M
minqiyang 已提交
71
                   const platform::Place expected_place,
M
minqiyang 已提交
72 73 74 75 76 77 78
                   const bool stop_gradient) {
  std::map<std::string, VarBase*> vars;

  framework::OpDesc* op_desc = op->op_desc_;
  VLOG(3) << "tracer tracing " << op_desc->Type();
  op_desc->InferShape(*block);
  op_desc->InferVarType(block);
M
minqiyang 已提交
79

M
minqiyang 已提交
80 81 82 83 84 85 86 87 88
  std::unique_ptr<framework::OperatorBase> op_base =
      framework::OpRegistry::CreateOp(*op_desc);

  framework::VariableValueMap invars_map;
  framework::VariableValueMap outvars_map;

  op->input_vars_ = inputs;
  for (auto it : op->input_vars_) {
    auto& invars = invars_map[it.first];
M
minqiyang 已提交
89
    invars.reserve(it.second.size());
M
minqiyang 已提交
90
    for (VarBase* inp : it.second) {
M
minqiyang 已提交
91
      PADDLE_ENFORCE_NOT_NULL(inp->var_, "op %s input %s nullptr",
M
minqiyang 已提交
92 93
                              op->op_desc_->Type(), inp->var_desc_->Name());

M
minqiyang 已提交
94
      invars.emplace_back(inp->var_);
M
minqiyang 已提交
95
      vars[inp->var_desc_->Name()] = inp;
M
minqiyang 已提交
96
      if (inp->PreOp() && !inp->IsStopGradient()) {
X
Xin Pan 已提交
97 98
        op->pre_ops_[it.first].push_back(inp->PreOp());
        op->pre_ops_out_idx_[it.first].push_back(inp->PreOpOutIdx());
M
minqiyang 已提交
99 100 101 102 103 104 105 106 107 108 109 110
      } else {
        op->pre_ops_[it.first].push_back(nullptr);
      }
      VLOG(3) << "input vname " << inp->var_desc_->Name() << " "
              << inp->var_->IsInitialized();
    }
  }

  op->output_vars_ = outputs;
  for (auto it : op->output_vars_) {
    auto& outvars = outvars_map[it.first];
    const std::vector<VarBase*>& outputs = it.second;
M
minqiyang 已提交
111
    outvars.reserve(outputs.size());
M
minqiyang 已提交
112 113
    for (size_t i = 0; i < outputs.size(); ++i) {
      VarBase* out = outputs[i];
M
minqiyang 已提交
114
      outvars.emplace_back(out->var_);
M
minqiyang 已提交
115 116 117 118 119 120 121 122
      vars[out->var_desc_->Name()] = out;

      framework::VarDesc* var_desc = block->FindVar(out->var_desc_->Name());
      if (var_desc->GetType() == framework::proto::VarType::LOD_TENSOR) {
        out->var_->GetMutable<framework::LoDTensor>();
      } else {
        LOG(ERROR) << "tracer doesn't support yet";
      }
X
Xin Pan 已提交
123
      out->TrackPreOp(op, it.first, i, stop_gradient);
M
minqiyang 已提交
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138

      VLOG(3) << "output vname " << out->var_desc_->Name() << " "
              << out->var_->IsInitialized();
    }
  }

  VLOG(3) << "tracer running " << op_desc->Type();
  framework::RuntimeContext ctx(invars_map, outvars_map);

  // TODO(panyx0718): Cache p.
  framework::OperatorWithKernel* op_kernel =
      dynamic_cast<framework::OperatorWithKernel*>(op_base.get());
  PADDLE_ENFORCE_NOT_NULL(op_kernel, "only support op with kernel");

  framework::Scope scope;
P
Paddle CI 已提交
139 140 141
  op->place_ = GetExpectedPlace(expected_place, inputs);
  PreparedOp prepared_op = PreparedOp::Prepare(ctx, *op_kernel, op->place_);
  prepared_op.op.RuntimeInferShape(scope, op->place_, ctx);
M
minqiyang 已提交
142 143
  prepared_op.func(framework::ExecutionContext(
      prepared_op.op, scope, *prepared_op.dev_ctx, prepared_op.ctx));
M
minqiyang 已提交
144 145

  if (!stop_gradient) {
146 147
    std::unique_ptr<std::unordered_map<std::string, std::string>> grad_to_var(
        new std::unordered_map<std::string, std::string>());
X
Xin Pan 已提交
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
    CreateGradOp(*op_desc, {}, {block}, &op->grad_op_descs_, grad_to_var.get());

    op->grad_input_vars_.resize(op->grad_op_descs_.size());
    op->grad_output_vars_.resize(op->grad_op_descs_.size());
    for (size_t i = 0; i < op->grad_op_descs_.size(); ++i) {
      framework::OpDesc* grad_op_desc = op->grad_op_descs_[i];
      for (auto it : grad_op_desc->Inputs()) {
        auto& grad_in_vars = op->grad_input_vars_[i][it.first];
        for (const std::string& grad_invar : it.second) {
          block->FindRecursiveOrCreateVar(grad_invar);
          auto var_it = grad_to_var->find(grad_invar);
          if (var_it == grad_to_var->end()) {
            auto fwd_var_it = vars.find(grad_invar);
            PADDLE_ENFORCE(fwd_var_it != vars.end());
            // Forward inputs or outputs.
            grad_in_vars.push_back(fwd_var_it->second->var_);
          } else {
            VarBase* var = vars[var_it->second];
            if (!var->grads_->var_->IsInitialized()) {
              InitVar(var->var_, var->grads_->var_,
                      prepared_op.GetDeviceContext());
            }
            // Douts.
            grad_in_vars.push_back(var->grads_->var_);
          }
        }
      }

      for (auto it : grad_op_desc->Outputs()) {
        auto& grad_out_vars = op->grad_output_vars_[i][it.first];
        for (const std::string& grad_outvar : it.second) {
          block->FindRecursiveOrCreateVar(grad_outvar);
          auto var_it = grad_to_var->find(grad_outvar);
          PADDLE_ENFORCE(var_it != grad_to_var->end(),
                         "Could not found the grad op output var, should this "
                         "operator %s's stop gradient be True",
                         op_desc->Type());
M
minqiyang 已提交
185
          VarBase* var = vars[var_it->second];
M
minqiyang 已提交
186
          if (!var->grads_->var_->IsInitialized()) {
M
minqiyang 已提交
187 188
            InitVar(var->var_, var->grads_->var_,
                    prepared_op.GetDeviceContext());
M
minqiyang 已提交
189
          }
X
Xin Pan 已提交
190
          grad_out_vars.push_back(var->grads_->var_);
M
minqiyang 已提交
191 192 193 194 195 196 197 198
        }
      }
    }
  }

  op->block_ = block;
}

199 200 201 202
std::vector<VarBase*> Tracer::PyTrace(OpBase* op,
                                      const std::vector<VarBase*>& inputs,
                                      bool stop_gradient) {
  VLOG(3) << "py_trace";
X
Xin Pan 已提交
203 204
  op->input_vars_[PyLayer::kFwdInp] = inputs;
  op->output_vars_[PyLayer::kFwdOut] = PyLayer::Apply(op->forward_id_, inputs);
205
  for (VarBase* inp : inputs) {
M
minqiyang 已提交
206
    if (inp->PreOp() && !inp->IsStopGradient()) {
X
Xin Pan 已提交
207 208
      op->pre_ops_[PyLayer::kFwdInp].push_back(inp->PreOp());
      op->pre_ops_out_idx_[PyLayer::kFwdInp].push_back(inp->PreOpOutIdx());
209
    } else {
X
Xin Pan 已提交
210
      op->pre_ops_[PyLayer::kFwdInp].push_back(nullptr);
211 212 213
    }
  }

X
Xin Pan 已提交
214
  auto& outputs = op->output_vars_[PyLayer::kFwdOut];
215 216
  for (size_t i = 0; i < outputs.size(); ++i) {
    VarBase* out = outputs[i];
X
Xin Pan 已提交
217
    out->TrackPreOp(op, PyLayer::kFwdOut, i, stop_gradient);
218 219
  }
  if (!stop_gradient) {
X
Xin Pan 已提交
220 221
    op->grad_input_vars_.resize(1);
    op->grad_output_vars_.resize(1);
X
Xin Pan 已提交
222
    auto& grad_input_vars =
X
Xin Pan 已提交
223
        op->grad_input_vars_[0][framework::GradVarName(PyLayer::kFwdInp)];
X
Xin Pan 已提交
224
    auto& grad_output_vars =
X
Xin Pan 已提交
225
        op->grad_output_vars_[0][framework::GradVarName(PyLayer::kFwdOut)];
226 227 228 229 230 231 232

    for (const VarBase* inp : inputs) {
      grad_input_vars.push_back(inp->var_);
    }
    for (VarBase* out : outputs) {
      grad_input_vars.push_back(out->var_);
    }
M
minqiyang 已提交
233 234

    platform::CPUPlace place;
235
    for (VarBase* out : outputs) {
M
minqiyang 已提交
236
      grad_input_vars.push_back(out->grads_->var_);
237
      if (!grad_input_vars.back()->IsInitialized()) {
M
minqiyang 已提交
238 239 240
        // TODO(minqiyang): Add GPU support for PyLayer, only support CPU now
        InitVar(out->var_, grad_input_vars.back(),
                platform::DeviceContextPool::Instance().Get(place));
241 242
      }
    }
M
minqiyang 已提交
243

244
    for (const VarBase* inp : inputs) {
M
minqiyang 已提交
245
      grad_output_vars.push_back(inp->grads_->var_);
246
      if (!grad_output_vars.back()->IsInitialized()) {
M
minqiyang 已提交
247 248 249
        // TODO(minqiyang): Add GPU support for PyLayer, only support CPU now
        InitVar(inp->var_, grad_output_vars.back(),
                platform::DeviceContextPool::Instance().Get(place));
250 251 252 253 254 255
      }
    }
  }
  return outputs;
}

M
minqiyang 已提交
256
}  // namespace imperative
257
}  // namespace paddle