tracer.cc 9.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/imperative/tracer.h"

M
minqiyang 已提交
17 18 19 20
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/enforce.h"

21
namespace paddle {
M
minqiyang 已提交
22 23 24 25 26
namespace imperative {

void CreateGradOp(const framework::OpDesc& op_desc,
                  const std::unordered_set<std::string>& no_grad_set,
                  const std::vector<framework::BlockDesc*>& grad_sub_block,
X
Xin Pan 已提交
27
                  std::vector<framework::OpDesc*>* grad_op_descs,
M
minqiyang 已提交
28
                  std::unordered_map<std::string, std::string>* grad_to_var) {
X
Xin Pan 已提交
29 30
  PADDLE_ENFORCE(grad_op_descs->empty());
  std::vector<std::unique_ptr<framework::OpDesc>> descs =
M
minqiyang 已提交
31 32 33
      framework::OpInfoMap::Instance()
          .Get(op_desc.Type())
          .GradOpMaker()(op_desc, no_grad_set, grad_to_var, grad_sub_block);
J
JiabinYang 已提交
34

X
Xin Pan 已提交
35 36 37
  for (auto& desc : descs) {
    grad_op_descs->emplace_back(desc.release());
  }
M
minqiyang 已提交
38 39
}

M
minqiyang 已提交
40 41 42 43
void InitVar(framework::Variable* var, framework::Variable* grad_var,
             platform::DeviceContext* dev_ctx) {
  PADDLE_ENFORCE_NOT_NULL(dev_ctx,
                          "Could not get valid device from forward op");
M
minqiyang 已提交
44
  auto& var_t = var->Get<framework::LoDTensor>();
M
minqiyang 已提交
45 46 47
  grad_var->GetMutable<framework::LoDTensor>()->mutable_data<float>(
      var_t.dims(), dev_ctx->GetPlace());
  operators::math::set_constant(
M
minqiyang 已提交
48
      *dev_ctx, grad_var->GetMutable<framework::LoDTensor>(), 0.0);
M
minqiyang 已提交
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
}

platform::Place GetExpectedPlace(platform::Place place, VarBasePtrMap inputs) {
  platform::Place result = place;
  for (auto it : inputs) {
    for (VarBase* var : it.second) {
      platform::Place tmp_place =
          var->var_->Get<framework::LoDTensor>().place();
      if (!platform::is_same_place(tmp_place, result)) {
        PADDLE_THROW(
            "Input variable should keep in the same place: %s, but get place: "
            "%s of input %s instead",
            result, tmp_place, it.first);
      }
    }
  }

  return result;
M
minqiyang 已提交
67 68 69 70
}

void Tracer::Trace(OpBase* op, const VarBasePtrMap& inputs,
                   const VarBasePtrMap& outputs, framework::BlockDesc* block,
M
minqiyang 已提交
71
                   const platform::Place expected_place,
M
minqiyang 已提交
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
                   const bool stop_gradient) {
  std::map<std::string, VarBase*> vars;

  framework::OpDesc* op_desc = op->op_desc_;
  VLOG(3) << "tracer tracing " << op_desc->Type();
  op_desc->InferShape(*block);
  op_desc->InferVarType(block);
  std::unique_ptr<framework::OperatorBase> op_base =
      framework::OpRegistry::CreateOp(*op_desc);

  framework::VariableValueMap invars_map;
  framework::VariableValueMap outvars_map;

  op->input_vars_ = inputs;
  for (auto it : op->input_vars_) {
    auto& invars = invars_map[it.first];
M
minqiyang 已提交
88
    invars.reserve(it.second.size());
M
minqiyang 已提交
89
    for (VarBase* inp : it.second) {
M
minqiyang 已提交
90
      PADDLE_ENFORCE_NOT_NULL(inp->var_, "op %s input %s nullptr",
M
minqiyang 已提交
91 92
                              op->op_desc_->Type(), inp->var_desc_->Name());

M
minqiyang 已提交
93
      invars.emplace_back(inp->var_);
M
minqiyang 已提交
94
      vars[inp->var_desc_->Name()] = inp;
X
Xin Pan 已提交
95 96 97
      if (inp->PreOp()) {
        op->pre_ops_[it.first].push_back(inp->PreOp());
        op->pre_ops_out_idx_[it.first].push_back(inp->PreOpOutIdx());
M
minqiyang 已提交
98 99 100 101 102 103 104 105 106 107 108 109
      } else {
        op->pre_ops_[it.first].push_back(nullptr);
      }
      VLOG(3) << "input vname " << inp->var_desc_->Name() << " "
              << inp->var_->IsInitialized();
    }
  }

  op->output_vars_ = outputs;
  for (auto it : op->output_vars_) {
    auto& outvars = outvars_map[it.first];
    const std::vector<VarBase*>& outputs = it.second;
M
minqiyang 已提交
110
    outvars.reserve(outputs.size());
M
minqiyang 已提交
111 112
    for (size_t i = 0; i < outputs.size(); ++i) {
      VarBase* out = outputs[i];
M
minqiyang 已提交
113
      outvars.emplace_back(out->var_);
M
minqiyang 已提交
114 115 116 117 118 119 120 121
      vars[out->var_desc_->Name()] = out;

      framework::VarDesc* var_desc = block->FindVar(out->var_desc_->Name());
      if (var_desc->GetType() == framework::proto::VarType::LOD_TENSOR) {
        out->var_->GetMutable<framework::LoDTensor>();
      } else {
        LOG(ERROR) << "tracer doesn't support yet";
      }
X
Xin Pan 已提交
122
      out->TrackPreOp(op, it.first, i, stop_gradient);
M
minqiyang 已提交
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137

      VLOG(3) << "output vname " << out->var_desc_->Name() << " "
              << out->var_->IsInitialized();
    }
  }

  VLOG(3) << "tracer running " << op_desc->Type();
  framework::RuntimeContext ctx(invars_map, outvars_map);

  // TODO(panyx0718): Cache p.
  framework::OperatorWithKernel* op_kernel =
      dynamic_cast<framework::OperatorWithKernel*>(op_base.get());
  PADDLE_ENFORCE_NOT_NULL(op_kernel, "only support op with kernel");

  framework::Scope scope;
P
Paddle CI 已提交
138 139 140
  op->place_ = GetExpectedPlace(expected_place, inputs);
  PreparedOp prepared_op = PreparedOp::Prepare(ctx, *op_kernel, op->place_);
  prepared_op.op.RuntimeInferShape(scope, op->place_, ctx);
M
minqiyang 已提交
141 142
  prepared_op.func(framework::ExecutionContext(
      prepared_op.op, scope, *prepared_op.dev_ctx, prepared_op.ctx));
M
minqiyang 已提交
143 144

  if (!stop_gradient) {
145 146
    std::unique_ptr<std::unordered_map<std::string, std::string>> grad_to_var(
        new std::unordered_map<std::string, std::string>());
X
Xin Pan 已提交
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
    CreateGradOp(*op_desc, {}, {block}, &op->grad_op_descs_, grad_to_var.get());

    op->grad_input_vars_.resize(op->grad_op_descs_.size());
    op->grad_output_vars_.resize(op->grad_op_descs_.size());
    for (size_t i = 0; i < op->grad_op_descs_.size(); ++i) {
      framework::OpDesc* grad_op_desc = op->grad_op_descs_[i];
      for (auto it : grad_op_desc->Inputs()) {
        auto& grad_in_vars = op->grad_input_vars_[i][it.first];
        for (const std::string& grad_invar : it.second) {
          block->FindRecursiveOrCreateVar(grad_invar);
          auto var_it = grad_to_var->find(grad_invar);
          if (var_it == grad_to_var->end()) {
            auto fwd_var_it = vars.find(grad_invar);
            PADDLE_ENFORCE(fwd_var_it != vars.end());
            // Forward inputs or outputs.
            grad_in_vars.push_back(fwd_var_it->second->var_);
          } else {
            VarBase* var = vars[var_it->second];
            if (!var->grads_->var_->IsInitialized()) {
              InitVar(var->var_, var->grads_->var_,
                      prepared_op.GetDeviceContext());
            }
            // Douts.
            grad_in_vars.push_back(var->grads_->var_);
          }
        }
      }

      for (auto it : grad_op_desc->Outputs()) {
        auto& grad_out_vars = op->grad_output_vars_[i][it.first];
        for (const std::string& grad_outvar : it.second) {
          block->FindRecursiveOrCreateVar(grad_outvar);
          auto var_it = grad_to_var->find(grad_outvar);
          PADDLE_ENFORCE(var_it != grad_to_var->end(),
                         "Could not found the grad op output var, should this "
                         "operator %s's stop gradient be True",
                         op_desc->Type());
M
minqiyang 已提交
184
          VarBase* var = vars[var_it->second];
M
minqiyang 已提交
185
          if (!var->grads_->var_->IsInitialized()) {
M
minqiyang 已提交
186 187
            InitVar(var->var_, var->grads_->var_,
                    prepared_op.GetDeviceContext());
M
minqiyang 已提交
188
          }
X
Xin Pan 已提交
189
          grad_out_vars.push_back(var->grads_->var_);
M
minqiyang 已提交
190 191 192 193 194 195 196 197
        }
      }
    }
  }

  op->block_ = block;
}

198 199 200 201
std::vector<VarBase*> Tracer::PyTrace(OpBase* op,
                                      const std::vector<VarBase*>& inputs,
                                      bool stop_gradient) {
  VLOG(3) << "py_trace";
X
Xin Pan 已提交
202 203
  op->input_vars_[PyLayer::kFwdInp] = inputs;
  op->output_vars_[PyLayer::kFwdOut] = PyLayer::Apply(op->forward_id_, inputs);
204
  for (VarBase* inp : inputs) {
X
Xin Pan 已提交
205 206 207
    if (inp->PreOp()) {
      op->pre_ops_[PyLayer::kFwdInp].push_back(inp->PreOp());
      op->pre_ops_out_idx_[PyLayer::kFwdInp].push_back(inp->PreOpOutIdx());
208
    } else {
X
Xin Pan 已提交
209
      op->pre_ops_[PyLayer::kFwdInp].push_back(nullptr);
210 211 212
    }
  }

X
Xin Pan 已提交
213
  auto& outputs = op->output_vars_[PyLayer::kFwdOut];
214 215
  for (size_t i = 0; i < outputs.size(); ++i) {
    VarBase* out = outputs[i];
X
Xin Pan 已提交
216
    out->TrackPreOp(op, PyLayer::kFwdOut, i, stop_gradient);
217 218
  }
  if (!stop_gradient) {
X
Xin Pan 已提交
219 220
    op->grad_input_vars_.resize(1);
    op->grad_output_vars_.resize(1);
X
Xin Pan 已提交
221
    auto& grad_input_vars =
X
Xin Pan 已提交
222
        op->grad_input_vars_[0][framework::GradVarName(PyLayer::kFwdInp)];
X
Xin Pan 已提交
223
    auto& grad_output_vars =
X
Xin Pan 已提交
224
        op->grad_output_vars_[0][framework::GradVarName(PyLayer::kFwdOut)];
225 226 227 228 229 230 231

    for (const VarBase* inp : inputs) {
      grad_input_vars.push_back(inp->var_);
    }
    for (VarBase* out : outputs) {
      grad_input_vars.push_back(out->var_);
    }
M
minqiyang 已提交
232 233

    platform::CPUPlace place;
234
    for (VarBase* out : outputs) {
M
minqiyang 已提交
235
      grad_input_vars.push_back(out->grads_->var_);
236
      if (!grad_input_vars.back()->IsInitialized()) {
M
minqiyang 已提交
237 238 239
        // TODO(minqiyang): Add GPU support for PyLayer, only support CPU now
        InitVar(out->var_, grad_input_vars.back(),
                platform::DeviceContextPool::Instance().Get(place));
240 241
      }
    }
M
minqiyang 已提交
242

243
    for (const VarBase* inp : inputs) {
M
minqiyang 已提交
244
      grad_output_vars.push_back(inp->grads_->var_);
245
      if (!grad_output_vars.back()->IsInitialized()) {
M
minqiyang 已提交
246 247 248
        // TODO(minqiyang): Add GPU support for PyLayer, only support CPU now
        InitVar(inp->var_, grad_output_vars.back(),
                platform::DeviceContextPool::Instance().Get(place));
249 250 251 252 253 254
      }
    }
  }
  return outputs;
}

M
minqiyang 已提交
255
}  // namespace imperative
256
}  // namespace paddle