operator.h 13.9 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

D
dongzhihong 已提交
17
#include <algorithm>
18
#include <atomic>
Q
Qiao Longfei 已提交
19 20 21 22
#include <string>
#include <unordered_map>
#include <vector>

Y
Yu Yang 已提交
23
#include "glog/logging.h"  // For VLOG
Y
Yi Wang 已提交
24
#include "paddle/framework/attribute.h"
Q
qiaolongfei 已提交
25
#include "paddle/framework/block_desc.h"
Y
Yu Yang 已提交
26
#include "paddle/framework/data_type.h"
Y
Yu Yang 已提交
27
#include "paddle/framework/framework.pb.h"
28
#include "paddle/framework/lod_tensor.h"
Y
Yu Yang 已提交
29
#include "paddle/framework/op_info.h"
Q
qijun 已提交
30
#include "paddle/framework/scope.h"
Q
QI JUN 已提交
31
#include "paddle/framework/selected_rows.h"
Q
qijun 已提交
32 33 34
#include "paddle/framework/tensor.h"
#include "paddle/platform/device_context.h"
#include "paddle/platform/place.h"
Y
Yu Yang 已提交
35
#include "paddle/platform/variant.h"
Q
qijun 已提交
36
#include "paddle/utils/Error.h"
Q
Qiao Longfei 已提交
37 38 39 40

namespace paddle {
namespace framework {

41
/// If a variable is a empty variable, that name will be used.
42
constexpr char kEmptyVarName[] = "@EMPTY@";
43 44 45

/// If a variable is a temporary variable, that name will be set in Python,
/// but it will be convert to a unique name in scope after OpCreator.
46
constexpr char kTempVarName[] = "@TEMP@";
47 48 49 50

/// If a variable's name has a certain suffix, it means that the
/// variable is the gradient of another varibale.
/// e.g. Variable "x@GRAD" is the gradient of varibale "x".
51
constexpr char kGradVarSuffix[] = "@GRAD";
52 53

/// Variables with this suffix are supposed to be filled up with zeros.
54
constexpr char kZeroVarSuffix[] = "@ZERO";
55 56 57 58 59

inline std::string GradVarName(const std::string& var_name) {
  return var_name + kGradVarSuffix;
}

Q
Qiao Longfei 已提交
60
class OperatorBase;
61
class ExecutionContext;
62

Q
Qiao Longfei 已提交
63 64 65 66 67 68 69 70
/**
 * OperatorBase has the basic element that Net will call to do computation.
 * Only CreateOperator from OpRegistry will new Operator directly. User
 * should always construct a proto message OpDesc and call
 * OpRegistry::CreateOp(op_desc) to get an Operator instance.
 */
class OperatorBase {
 public:
Y
Yu Yang 已提交
71 72
  OperatorBase(const std::string& type, const VariableNameMap& inputs,
               const VariableNameMap& outputs, const AttributeMap& attrs);
73

Q
Qiao Longfei 已提交
74 75 76
  virtual ~OperatorBase() {}

  template <typename T>
Y
Yu Yang 已提交
77
  inline const T& Attr(const std::string& name) const {
Q
Qiao Longfei 已提交
78 79 80 81 82
    PADDLE_ENFORCE(attrs_.count(name) != 0, "%s should be in AttributeMap",
                   name);
    return boost::get<T>(attrs_.at(name));
  }

83
  virtual std::string DebugString() const;
Q
Qiao Longfei 已提交
84 85

  /// Net will call this function to Run an op.
D
dzhwinter 已提交
86
  virtual void Run(const Scope& scope, const platform::Place& place) const = 0;
Y
Yu Yang 已提交
87

Y
Yu Yang 已提交
88 89
  virtual bool IsNetOp() const { return false; }

90 91
  virtual bool SupportGPU() const { return false; }

D
dongzhihong 已提交
92 93 94
  /// rename inputs outputs name
  void Rename(const std::string& old_name, const std::string& new_name);

Y
Yu Yang 已提交
95 96
  const VariableNameMap& Inputs() const { return inputs_; }
  const VariableNameMap& Outputs() const { return outputs_; }
97

Y
Yu Yang 已提交
98
  //! Get a input with argument's name described in `op_proto`
99
  std::string Input(const std::string& name) const;
Y
Yu Yang 已提交
100
  //! Get a input which has multiple variables.
Y
Yu Yang 已提交
101
  const std::vector<std::string>& Inputs(const std::string& name) const;
Y
Yi Wang 已提交
102

Q
qijun 已提交
103 104
  std::vector<std::string> InputVars() const;

Y
Yu Yang 已提交
105
  //! Get a output with argument's name described in `op_proto`
106
  std::string Output(const std::string& name) const;
Y
Yu Yang 已提交
107 108
  //! Get an output which has multiple variables.
  //! TODO add a vector_view to prevent memory copy.
Y
Yu Yang 已提交
109
  const std::vector<std::string>& Outputs(const std::string& name) const;
Y
Yan Chunwei 已提交
110

Y
Yu Yang 已提交
111
  virtual std::vector<std::string> OutputVars(bool has_intermediate) const;
112

Q
qiaolongfei 已提交
113
  const std::string& Type() const { return type_; }
Q
qiaolongfei 已提交
114
  void SetType(const std::string& type) { type_ = type; }
Y
Yi Wang 已提交
115 116
  const AttributeMap& Attrs() const { return attrs_; }

Y
Yu Yang 已提交
117
  // Return a new operator instance, which is as same as this.
Y
Yu Yang 已提交
118 119
  // Use unique_ptr to prevent caller forget to delete this pointer.
  virtual std::unique_ptr<OperatorBase> Clone() const = 0;
Y
Yu Yang 已提交
120

Q
qiaolongfei 已提交
121
 protected:
Q
Qiao Longfei 已提交
122
  std::string type_;
D
dongzhihong 已提交
123
  // NOTE: in case of OpGrad, inputs_ contains:
124
  // I (Inputs)
D
dongzhihong 已提交
125 126
  // O (Outputs)
  // OG (Output Gradients)
Y
Yu Yang 已提交
127
  VariableNameMap inputs_;
Y
Yu Yang 已提交
128

D
dongzhihong 已提交
129 130
  // NOTE: in case of OpGrad, outputs_ contains
  // IG (Inputs Gradients)
Y
Yu Yang 已提交
131
  VariableNameMap outputs_;
Q
Qiao Longfei 已提交
132
  AttributeMap attrs_;
133 134 135 136

 private:
  void GenerateTemporaryNames();
  void CheckAllInputOutputSet() const;
Y
Yan Chunwei 已提交
137 138
};

Y
Yu Yang 已提交
139 140
// Macro for define a clone method.
// If you are writing an kernel operator, `Clone` will be defined when you
141
// register it. i.e. `Clone` method is not needed to define by yourself.
142 143 144
#define DEFINE_OP_CLONE_METHOD(cls)                                            \
  std::unique_ptr<::paddle::framework::OperatorBase> Clone() const final {     \
    return std::unique_ptr<::paddle::framework::OperatorBase>(new cls(*this)); \
Y
Yu Yang 已提交
145
  }
Y
Yu Yang 已提交
146

Y
Yu Yang 已提交
147 148 149 150
// Macro for define a default constructor for Operator.
// You can also use
//   using PARENT_CLASS::PARENT_CLASS;
// to use parent's constructor.
Y
Yu Yang 已提交
151 152
#define DEFINE_OP_CONSTRUCTOR(cls, parent_cls)             \
  cls(const std::string& type,                             \
Y
Yu Yang 已提交
153 154 155
      const ::paddle::framework::VariableNameMap& inputs,  \
      const ::paddle::framework::VariableNameMap& outputs, \
      const paddle::framework::AttributeMap& attrs)        \
Y
Yu Yang 已提交
156
      : parent_cls(type, inputs, outputs, attrs) {}
Y
Yu Yang 已提交
157

158 159
class NOP : public OperatorBase {
 public:
160
  using OperatorBase::OperatorBase;
D
dzhwinter 已提交
161
  void Run(const Scope& scope, const platform::Place& place) const override {}
162 163 164
  std::unique_ptr<OperatorBase> Clone() const override {
    return std::unique_ptr<OperatorBase>(new NOP(*this));
  }
165 166
};

167
class ExecutionContext {
Y
Yan Chunwei 已提交
168
 public:
169 170 171
  ExecutionContext(const OperatorBase& op, const Scope& scope,
                   const platform::DeviceContext& device_context)
      : op_(op), scope_(scope), device_context_(device_context) {}
172

Q
qiaolongfei 已提交
173 174 175 176
  const OperatorBase& op() const { return op_; }

  const Scope& scope() const { return scope_; }

Q
qiaolongfei 已提交
177
  template <typename T>
Y
Yu Yang 已提交
178 179
  inline const T& Attr(const std::string& name) const {
    return op_.Attr<T>(name);
Q
qiaolongfei 已提交
180 181
  }

Y
Yu Yang 已提交
182
  size_t InputSize(const std::string& name) const {
Y
Yu Yang 已提交
183
    return op_.Inputs(name).size();
Y
Yan Chunwei 已提交
184 185
  }

Y
Yu Yang 已提交
186
  size_t OutputSize(const std::string& name) const {
Y
Yu Yang 已提交
187
    return op_.Outputs(name).size();
Y
Yan Chunwei 已提交
188 189
  }

190
  const Variable* InputVar(const std::string& name) const {
191
    auto ipt = op_.Input(name);
Y
Yu Yang 已提交
192
    return ipt == kEmptyVarName ? nullptr : scope_.FindVar(ipt);
Y
Yan Chunwei 已提交
193 194
  }

195
  Variable* OutputVar(const std::string& name) const {
196
    auto opt = op_.Output(name);
Y
Yu Yang 已提交
197
    return opt == kEmptyVarName ? nullptr : scope_.FindVar(opt);
Y
Yan Chunwei 已提交
198 199
  }

200 201
  const std::vector<const Variable*> MultiInputVar(
      const std::string& name) const {
Y
Yan Chunwei 已提交
202 203
    auto names = op_.Inputs(name);
    std::vector<const Variable*> res;
204
    res.reserve(names.size());
205 206
    std::transform(names.begin(), names.end(), std::back_inserter(res),
                   [this](const std::string& name) {
Y
Yu Yang 已提交
207 208
                     return name == kEmptyVarName ? nullptr
                                                  : scope_.FindVar(name);
209
                   });
Y
Yan Chunwei 已提交
210 211 212
    return res;
  }

213
  std::vector<Variable*> MultiOutputVar(const std::string& name) const {
Y
Yan Chunwei 已提交
214
    auto names = op_.Outputs(name);
215
    std::vector<Variable*> res;
216
    res.reserve(names.size());
217 218
    std::transform(names.begin(), names.end(), std::back_inserter(res),
                   [this](const std::string& name) {
Y
Yu Yang 已提交
219 220
                     return name == kEmptyVarName ? nullptr
                                                  : scope_.FindVar(name);
221
                   });
Y
Yan Chunwei 已提交
222 223 224
    return res;
  }

225 226
  template <typename T>
  const T* Input(const std::string& name) const {
Y
Yu Yang 已提交
227
    auto* var = InputVar(name);
228
    return var == nullptr ? nullptr : &var->Get<T>();
229 230 231 232
  }

  template <typename T>
  T* Output(const std::string& name) const {
233
    auto var = OutputVar(name);
234
    return var == nullptr ? nullptr : var->GetMutable<T>();
235 236 237 238 239 240 241 242
  }

  template <typename T>
  const std::vector<const T*> MultiInput(const std::string& name) const {
    auto names = op_.Inputs(name);
    std::vector<const T*> res;
    res.reserve(names.size());
    std::transform(names.begin(), names.end(), std::back_inserter(res),
243
                   [&](const std::string& sub_name) {
244
                     auto var = scope_.FindVar(sub_name);
245
                     return var == nullptr ? nullptr : &var->Get<T>();
246 247 248 249 250
                   });
    return res;
  }

  template <typename T>
251
  std::vector<T*> MultiOutput(const std::string& name) const {
252
    auto names = op_.Outputs(name);
253
    std::vector<T*> res;
254 255
    res.reserve(names.size());
    std::transform(names.begin(), names.end(), std::back_inserter(res),
256
                   [&](const std::string& sub_name) {
257
                     auto var = scope_.FindVar(sub_name);
258
                     return var == nullptr ? nullptr : var->GetMutable<T>();
259 260 261 262
                   });
    return res;
  }

263 264 265 266 267 268
  void ShareLoD(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) const {
    PADDLE_ENFORCE_LT(i, InputSize(in));
    PADDLE_ENFORCE_LT(j, OutputSize(out));
    auto* in_var = MultiInputVar(in)[i];
    auto* out_var = MultiOutputVar(out)[j];
269
    if (!in_var->IsType<LoDTensor>()) return;
270
    PADDLE_ENFORCE(out_var->IsType<LoDTensor>(),
271
                   "The %d-th output of Output(%s) must be LoDTensor.", j, out);
272 273 274
    auto in_tensor = in_var->Get<LoDTensor>();
    auto* out_tensor = out_var->GetMutable<LoDTensor>();
    out_tensor->set_lod(in_tensor.lod());
275 276
  }

277
  platform::Place GetPlace() const { return device_context_.GetPlace(); }
Q
qijun 已提交
278

Q
QI JUN 已提交
279 280 281 282 283
  template <typename DeviceContextType>
  const DeviceContextType& device_context() const {
    return *reinterpret_cast<const DeviceContextType*>(&device_context_);
  }

284
  const platform::DeviceContext& device_context() const {
Q
qijun 已提交
285
    return device_context_;
Q
qijun 已提交
286
  }
Q
qijun 已提交
287

Q
QI JUN 已提交
288 289 290 291 292 293 294 295
#ifdef PADDLE_WITH_CUDA
  const inline platform::CUDADeviceContext& cuda_device_context() const {
    PADDLE_ENFORCE(platform::is_gpu_place(device_context_.GetPlace()));
    return *reinterpret_cast<const platform::CUDADeviceContext*>(
        &device_context_);
  }
#endif

D
dzhwinter 已提交
296
  //! Get actual name vector for this input.
D
Dong Zhihong 已提交
297 298 299
  const std::vector<std::string>& Inputs(const std::string& name) const {
    return op_.Inputs(name);
  }
D
Dong Zhihong 已提交
300

D
dzhwinter 已提交
301
  //! Get actual name vector for this output.
D
Dong Zhihong 已提交
302 303 304 305
  const std::vector<std::string>& Outputs(const std::string& name) const {
    return op_.Outputs(name);
  }

306
 private:
307 308
  const OperatorBase& op_;
  const Scope& scope_;
309
  const platform::DeviceContext& device_context_;
Q
Qiao Longfei 已提交
310 311
};

312 313 314 315 316 317 318 319 320 321 322 323 324 325
template <>
const Tensor* ExecutionContext::Input<Tensor>(const std::string& name) const;

template <>
const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
    const std::string& name) const;

template <>
Tensor* ExecutionContext::Output<Tensor>(const std::string& name) const;

template <>
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
    const std::string& name) const;

Y
Yu Yang 已提交
326
class OpKernelBase {
Q
qijun 已提交
327
 public:
Q
qijun 已提交
328
  /**
329
   * ExecutionContext is the only parameter of Kernel Run function.
Q
qijun 已提交
330 331
   * Run will get input/output variables, state such as momentum and
   * device resource such as CUDA stream, cublas handle, etc. from
332
   * ExecutionContext. User should construct it before run the Operator.
Q
qijun 已提交
333 334
   */

335
  virtual void Compute(const ExecutionContext& context) const = 0;
Y
Yu Yang 已提交
336

Y
Yu Yang 已提交
337 338 339 340 341 342 343
  virtual ~OpKernelBase() = default;
};

template <typename T>
class OpKernel : public OpKernelBase {
 public:
  using ELEMENT_TYPE = T;
Y
Yu Yang 已提交
344 345
};

Y
Yu Yang 已提交
346 347
struct OpKernelType {
  struct Hash {
Y
Yu Yang 已提交
348
    std::hash<int> hash_;
Y
Yu Yang 已提交
349
    size_t operator()(const OpKernelType& key) const {
Y
Yu Yang 已提交
350 351
      int place = key.place_.which();
      int data_type = static_cast<int>(key.data_type_);
Y
Yu Yang 已提交
352 353
      int pre_hash = data_type << NUM_PLACE_TYPE_LIMIT_IN_BIT |
                     (place & ((1 << NUM_PLACE_TYPE_LIMIT_IN_BIT) - 1));
Y
Yu Yang 已提交
354
      return hash_(pre_hash);
Y
Yu Yang 已提交
355 356 357
    }
  };

Y
Yu Yang 已提交
358
  platform::Place place_;
359
  proto::DataType data_type_;
Y
Yu Yang 已提交
360

361
  OpKernelType(proto::DataType data_type, platform::Place place)
Y
Yu Yang 已提交
362 363
      : place_(place), data_type_(data_type) {}

364 365
  OpKernelType(proto::DataType data_type,
               const platform::DeviceContext& dev_ctx)
Y
Yu Yang 已提交
366 367 368 369 370 371 372 373 374 375
      : place_(dev_ctx.GetPlace()), data_type_(data_type) {}

  bool operator==(const OpKernelType& o) const {
    return platform::places_are_same_class(place_, o.place_) &&
           data_type_ == o.data_type_;
  }
};

class OperatorWithKernel : public OperatorBase {
 public:
Y
Yu Yang 已提交
376
  using OpKernelMap =
Y
Yu Yang 已提交
377 378
      std::unordered_map<OpKernelType, std::unique_ptr<OpKernelBase>,
                         OpKernelType::Hash>;
Q
Qiao Longfei 已提交
379

Y
Yu Yang 已提交
380 381
  OperatorWithKernel(const std::string& type, const VariableNameMap& inputs,
                     const VariableNameMap& outputs, const AttributeMap& attrs)
Y
Yu Yang 已提交
382 383
      : OperatorBase(type, inputs, outputs, attrs) {}

D
dzhwinter 已提交
384
  void Run(const Scope& scope, const platform::Place& place) const final;
Q
Qiao Longfei 已提交
385

Y
Yu Yang 已提交
386 387 388 389
  static std::unordered_map<std::string /* op_type */, OpKernelMap>&
  AllOpKernels() {
    static std::unordered_map<std::string, OpKernelMap> g_all_op_kernels;
    return g_all_op_kernels;
Y
Yu Yang 已提交
390
  }
Y
Yan Chunwei 已提交
391

392
  bool SupportGPU() const override {
Y
Yu Yang 已提交
393 394 395 396 397
    auto& op_kernels = OperatorWithKernel::AllOpKernels().at(type_);
    return std::any_of(op_kernels.begin(), op_kernels.end(),
                       [](OpKernelMap::const_reference kern_pair) {
                         return platform::is_gpu_place(kern_pair.first.place_);
                       });
398 399
  }

400 401 402
  virtual void InferShape(InferShapeContext* ctx) const {
    OpInfoMap::Instance().Get(Type()).infer_shape_(ctx);
  }
Y
Yu Yang 已提交
403

Q
qiaolongfei 已提交
404
 protected:
Y
Yu Yang 已提交
405 406 407
  virtual OpKernelType GetKernelType(const ExecutionContext& ctx) const;

 private:
Y
Yu Yang 已提交
408 409
  // indicate kernel DataType by input data. Defaultly all input data must be
  // same.
410
  proto::DataType IndicateDataType(const ExecutionContext& ctx) const;
Q
Qiao Longfei 已提交
411 412
};

Y
Yu Yang 已提交
413
std::ostream& operator<<(std::ostream& os, const OpKernelType& kernel_key);
414

Y
Yu Yang 已提交
415 416
extern bool OpSupportGPU(const std::string& op_type);

Q
Qiao Longfei 已提交
417 418
}  // namespace framework
}  // namespace paddle