pybind.cc 39.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
C
chengduoZH 已提交
15 16
#include <algorithm>
#include <map>
S
sneaxiy 已提交
17
#include <memory>
C
chengduoZH 已提交
18 19 20 21 22
#include <mutex>  // NOLINT // for call_once
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
23

Y
Yi Wang 已提交
24 25 26
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/framework.pb.h"
27
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
28 29 30
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
31
#include "paddle/fluid/framework/op_registry.h"
Y
Yu Yang 已提交
32
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
33
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
34
#include "paddle/fluid/framework/reader.h"
Y
Yi Wang 已提交
35
#include "paddle/fluid/framework/selected_rows.h"
X
Xin Pan 已提交
36
#include "paddle/fluid/framework/version.h"
Y
Refine  
Yu Yang 已提交
37
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
D
dzhwinter 已提交
38
#include "paddle/fluid/operators/activation_op.h"
S
sneaxiy 已提交
39
#include "paddle/fluid/operators/reader/lod_tensor_blocking_queue.h"
Y
Yi Wang 已提交
40
#include "paddle/fluid/platform/enforce.h"
41
#include "paddle/fluid/platform/init.h"
Y
Yi Wang 已提交
42 43 44 45
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
#include "paddle/fluid/pybind/const_value.h"
#include "paddle/fluid/pybind/exception.h"
46 47
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
Y
Yu Yang 已提交
48
#include "paddle/fluid/pybind/recordio.h"
Y
Yi Wang 已提交
49
#include "paddle/fluid/pybind/tensor_py.h"
Y
Yu Yang 已提交
50

51
#include "paddle/fluid/string/to_string.h"
52

D
Dong Zhihong 已提交
53
#ifdef PADDLE_WITH_CUDA
P
peizhilin 已提交
54
#ifndef _WIN32
Y
Yi Wang 已提交
55
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
56
#endif
Y
Yi Wang 已提交
57 58
#include "paddle/fluid/platform/cuda_profiler.h"
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
59 60
#endif

M
minqiyang 已提交
61 62
#include "pybind11/stl.h"

63 64 65 66
DEFINE_bool(reader_queue_speed_test_mode, false,
            "If set true, the queue.pop will only get data from queue but not "
            "remove the data from queue for speed testing");

Q
Qiao Longfei 已提交
67 68 69
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);

70
namespace paddle {
71
namespace pybind {
72
bool IsCompiledWithCUDA() {
73
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
74 75 76 77 78 79
  return false;
#else
  return true;
#endif
}

Y
update  
Yancey1989 已提交
80
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
81
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
82 83 84 85 86 87
  return true;
#else
  return false;
#endif
}

88
PYBIND11_PLUGIN(core) {
Y
Refine  
Yu Yang 已提交
89
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
90
  py::module m("core", "C++ core of PaddlePaddle");
91

92 93 94 95
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

96
  BindException(&m);
Y
Yu Yang 已提交
97

98 99 100
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
Y
yuyang18 已提交
101
      .def("_get_dims",
102
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
103
      .def("_set_dims",
Q
qijun 已提交
104
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
105
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
106
           })
Y
yuyang18 已提交
107
      .def("_set_layout",
D
dzhwinter 已提交
108 109 110
           [](Tensor &self, const std::string &layout) {
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
111
      .def("_alloc_float",
D
dzhwinter 已提交
112
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
113
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
114
           })
Y
yuyang18 已提交
115
      .def("_alloc_float",
Y
Yu Yang 已提交
116
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
117
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
118
           })
Y
yuyang18 已提交
119
      .def("_alloc_int",
Y
Yu Yang 已提交
120
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
121
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
122
           })
Y
yuyang18 已提交
123
      .def("_alloc_int",
D
dzhwinter 已提交
124
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
125
             self.mutable_data<int>(place);
Q
qijun 已提交
126
           })
Y
yuyang18 已提交
127
      .def("_alloc_int",
C
chengduoZH 已提交
128 129 130
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
131
      .def("_alloc_float",
C
chengduoZH 已提交
132 133 134
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<float>(place);
           })
Y
Yu Yang 已提交
135 136
      .def("set", PyCPUTensorSetFromArray<float>)
      .def("set", PyCPUTensorSetFromArray<int>)
137
      .def("set", PyCPUTensorSetFromArray<double>)
138
      .def("set", PyCPUTensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
139
      .def("set", PyCPUTensorSetFromArray<bool>)
140
      .def("set", PyCPUTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
141
      .def("set", PyCPUTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
142
      .def("set", PyCPUTensorSetFromArray<int8_t>)
143
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
144 145
      .def("set", PyCUDATensorSetFromArray<float>)
      .def("set", PyCUDATensorSetFromArray<int>)
146
      .def("set", PyCUDATensorSetFromArray<double>)
147
      .def("set", PyCUDATensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
148
      .def("set", PyCUDATensorSetFromArray<bool>)
149
      .def("set", PyCUDATensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
150
      .def("set", PyCUDATensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
151
      .def("set", PyCUDATensorSetFromArray<int8_t>)
C
chengduoZH 已提交
152 153 154 155 156 157
      .def("set", PyCUDAPinnedTensorSetFromArray<float>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int>)
      .def("set", PyCUDAPinnedTensorSetFromArray<double>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int64_t>)
      .def("set", PyCUDAPinnedTensorSetFromArray<bool>)
      .def("set", PyCUDAPinnedTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
158
      .def("set", PyCUDAPinnedTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
159
      .def("set", PyCUDAPinnedTensorSetFromArray<int8_t>)
Q
qijun 已提交
160
#endif
161
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
162 163 164 165 166
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
      .def("_dtype", [](Tensor &self) { return ToDataType(self.type()); });
Y
Yu Yang 已提交
167

X
Xin Pan 已提交
168 169 170 171 172 173 174 175 176 177 178 179 180
  py::class_<LoDTensor, Tensor>(m, "LoDTensor", R"DOC(
    LoDTensor is a Tensor with optional LoD information.

    np.array(lod_tensor) can convert LoDTensor to numpy array.
    lod_tensor.lod() can retrieve the LoD information.

    LoD is short for Level of Details and is usually used for varied sequence
    length. You can skip the following comment if you don't need optional LoD.

  For example:
     A LoDTensor X can look like the example below. It contains 2 sequences.
     The first has length 2 and the second has length 3, as described by x.lod.

X
fix doc  
Xin Pan 已提交
181
     The first tensor dimension 5=2+3 is calculated from LoD if it's available.
X
Xin Pan 已提交
182
     It means the total number of sequence element. In X, each element has 2
X
fix doc  
Xin Pan 已提交
183
     columns, hence [5, 2].
X
Xin Pan 已提交
184 185 186

      x.lod  = [[2, 3]]
      x.data = [[1, 2], [3, 4],
X
fix doc  
Xin Pan 已提交
187 188
                [5, 6], [7, 8], [9, 10]]
      x.shape = [5, 2]
X
Xin Pan 已提交
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211

      LoD can have multiple levels (for example, a paragraph can have multiple
      sentences and a sentence can have multiple words). In the following
      LodTensor Y, the lod_level is 2. It means there are 2 sequence, the
      first sequence length is 2 (has 2 sub-sequences), the second one's
      length is 1. The first sequence's 2 sub-sequences have length 2 and 2,
      respectively. And the second sequence's 1 sub-sequence has length 3.

      y.lod = [[2 1], [2 2 3]]
      y.shape = [2+2+3, ...]

  Note:
      In above description, LoD is length-based. In Paddle internal
      implementation, lod is offset-based. Hence, internally,
      y.lod is represented as [[0, 2, 3], [0, 2, 4, 7]] (length-based
      equivlent would be [[2-0, 3-2], [2-0, 4-2, 7-4]]).

      Sometimes LoD is called recursive_sequence_length to be more
      self-explanatory. In this case, it must be length-based. Due to history
      reasons. when LoD is called lod in public API, it might be offset-based.
      Users should be careful about it.

        )DOC")
212 213
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
214 215 216 217 218 219 220 221 222 223 224 225 226 227
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, -1),
                 "the provided recursive_sequence_lengths info is invalid");
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
228
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
229 230 231 232 233
      // We implement offset based LOD in C++ while we use length based with
      // Python API. So we changed set_lod to set_recursive_sequence_lengths to
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
234
      .def("set_lod",
235
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
236
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
237
             LoD new_lod;
238 239
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
240 241
             PADDLE_ENFORCE(CheckLoD(new_lod, vectorize(self.dims()).front()),
                            "the provided lod info is invalid");
242
             self.set_lod(new_lod);
D
dangqingqing 已提交
243
           })
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()),
                 "the provided recursive_sequence_lengths info is invalid");
             self.set_lod(new_offset_lod);
           })
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
           })
G
gongweibao 已提交
269
      // Set above comments of set_lod.
270 271 272 273 274 275 276 277 278 279 280 281 282
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
           })
      .def("has_valid_recursive_sequence_lengths", [](LoDTensor &self) -> bool {
        // Check that the lod info is valid and match the outermost
        // dimension of the LoDTensor data
        return CheckLoD(self.lod(), vectorize(self.dims()).front());
D
dangqingqing 已提交
283 284
      });

Q
qijun 已提交
285 286 287 288 289 290 291 292 293 294 295 296 297
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
298 299 300 301 302 303 304 305 306
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
307
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
308
      .def("rows", [](SelectedRows &self) {
309 310 311 312 313
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
314
      });
Q
qijun 已提交
315

316
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
317 318 319

All parameter, weight, gradient are variables in Paddle.
)DOC")
320
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
321
      .def("set_int",
322 323
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
324 325 326 327 328 329 330
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
331
      .def("get_tensor",
332 333
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
334 335
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
336 337 338
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
339 340 341 342 343
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
344 345 346
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
P
peizhilin 已提交
347
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
P
peizhilin 已提交
348
      .def("get_communicator",
D
Dong Zhihong 已提交
349 350 351 352
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
P
peizhilin 已提交
353
#endif
Y
Refine  
Yu Yang 已提交
354 355 356 357 358
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
             PADDLE_ENFORCE(self.IsType<framework::ReaderHolder>());
             return self.GetMutable<framework::ReaderHolder>();
           },
P
peizhilin 已提交
359
           py::return_value_policy::reference);
360

Y
Refine  
Yu Yang 已提交
361
  py::class_<framework::ReaderHolder>(m, "Reader", "")
362
      .def("reset", &framework::ReaderHolder::ResetAll);
Y
Refine  
Yu Yang 已提交
363

S
sneaxiy 已提交
364 365 366 367
  using LoDTensorBlockingQueue =
      ::paddle::operators::reader::LoDTensorBlockingQueue;
  using LoDTensorBlockingQueueHolder =
      ::paddle::operators::reader::LoDTensorBlockingQueueHolder;
S
sneaxiy 已提交
368 369
  py::class_<LoDTensorBlockingQueue, std::shared_ptr<LoDTensorBlockingQueue>>(
      m, "LoDTensorBlockingQueue", "")
S
sneaxiy 已提交
370
      .def("push",
S
sneaxiy 已提交
371
           [](LoDTensorBlockingQueue &self,
S
sneaxiy 已提交
372
              const std::vector<framework::LoDTensor> &lod_tensor_vec) {
S
sneaxiy 已提交
373
             pybind11::gil_scoped_release release;
S
sneaxiy 已提交
374
             return self.Push(lod_tensor_vec);
S
sneaxiy 已提交
375
           })
S
sneaxiy 已提交
376 377 378 379
      .def("size", &LoDTensorBlockingQueue::Size)
      .def("capacity", &LoDTensorBlockingQueue::Cap)
      .def("close", &LoDTensorBlockingQueue::Close)
      .def("is_closed", &LoDTensorBlockingQueue::IsClosed);
S
sneaxiy 已提交
380

S
sneaxiy 已提交
381
  m.def("init_lod_tensor_blocking_queue",
S
sneaxiy 已提交
382
        [](Variable &var, size_t capacity,
S
sneaxiy 已提交
383
           const std::vector<std::vector<int64_t>> &shapes)
S
sneaxiy 已提交
384
            -> std::shared_ptr<LoDTensorBlockingQueue> {
S
sneaxiy 已提交
385 386 387 388 389 390
              std::vector<DDim> dims(shapes.size());
              std::transform(shapes.begin(), shapes.end(), dims.begin(),
                             [](const std::vector<int64_t> &shape) {
                               return make_ddim(shape);
                             });
              auto *holder = var.GetMutable<LoDTensorBlockingQueueHolder>();
391 392
              holder->InitOnce(capacity, dims,
                               FLAGS_reader_queue_speed_test_mode);
S
sneaxiy 已提交
393
              return holder->GetQueue();
S
sneaxiy 已提交
394
            },
S
sneaxiy 已提交
395
        py::return_value_policy::copy);
S
sneaxiy 已提交
396

397
  py::class_<Scope>(m, "Scope", "")
D
dongzhihong 已提交
398
      .def("var",
399
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
400
             return self.Var(name);
Y
Yu Yang 已提交
401
           },
402
           py::return_value_policy::reference)
403
      .def("find_var", &Scope::FindVar, py::return_value_policy::reference)
Y
Yu Yang 已提交
404
      .def(py::init<>())
405
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
406
           py::return_value_policy::reference)
Y
Yu Yang 已提交
407
      .def("drop_kids", &Scope::DropKids);
408

Y
Yu Yang 已提交
409 410
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
411 412
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
413 414 415 416 417 418 419 420 421 422
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
        PADDLE_ENFORCE(
            info.Proto().SerializeToString(&str),
            "Serialize OpProto Error. This could be a bug of Paddle.");
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
423 424
    return ret_values;
  });
425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
Y
Yu Yang 已提交
441
  m.def("prune", [](const ProgramDesc &origin,
442
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
443
    ProgramDesc prog_with_targets(origin);
444
    for (const auto &t : targets) {
445
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
446
    }
447
    proto::ProgramDesc pruned_desc;
448
    Prune(*prog_with_targets.Proto(), &pruned_desc);
Y
Yu Yang 已提交
449
    return new ProgramDesc(pruned_desc);
450
  });
451 452 453 454
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
455 456 457
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
458 459
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
460
  // clang-format off
Y
Yu Yang 已提交
461
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
462 463
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
464
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
465 466 467
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
D
dzhwinter 已提交
468
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
469
                      -> paddle::platform::DeviceContext* {
470
#ifndef PADDLE_WITH_CUDA
D
dzhwinter 已提交
471
                    PADDLE_THROW("CUDAPlace is not supported in CPU device.");
Q
qijun 已提交
472
#else
Q
qijun 已提交
473
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
474
#endif
C
chengduoZH 已提交
475 476 477 478 479 480 481 482 483 484 485
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_CUDA
                  PADDLE_THROW(
                        "CUDAPinnedPlace is not supported in CPU device.");
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
486
// clang-format on
P
peizhilin 已提交
487
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
488 489
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
D
dzhwinter 已提交
490
  py::class_<platform::CUDAPlace>(m, "CUDAPlace")
491
      .def(py::init<int>())
D
dzhwinter 已提交
492
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
493

494 495 496
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace")
      .def(py::init<>())
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
497

C
chengduoZH 已提交
498 499 500 501
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace")
      .def(py::init<>())
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

Y
Yu Yang 已提交
502 503 504 505 506 507 508
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
      .def("set_place",
D
dzhwinter 已提交
509
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
510
             self = gpu_place;
C
chengduoZH 已提交
511 512
           })
      .def("set_place", [](platform::Place &self,
C
chengduoZH 已提交
513 514
                           const platform::CUDAPinnedPlace &cuda_pinned_place) {
        self = cuda_pinned_place;
C
chengduoZH 已提交
515
      });
Y
Yu Yang 已提交
516

Y
Yu Yang 已提交
517 518 519
  py::class_<OperatorBase>(m, "Operator")
      .def_static("create",
                  [](py::bytes protobin) {
520
                    proto::OpDesc desc;
Y
Yu Yang 已提交
521 522 523 524 525
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
526
                    return OpRegistry::CreateOp(desc);
Y
Yu Yang 已提交
527
                  })
528
      .def("run",
529
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
530 531 532
              const platform::CPUPlace &place) { self.Run(scope, place); })
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
533
              const platform::CUDAPlace &place) { self.Run(scope, place); })
C
chengduoZH 已提交
534 535 536 537 538
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
539 540 541 542 543 544 545
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
546 547
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
548
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
549
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
550 551 552 553
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
554

F
fengjiayi 已提交
555
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
556
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
557
      .def("close", &Executor::Close)
S
sneaxiy 已提交
558 559 560 561 562
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
                     int block_id, bool create_local_scope, bool create_vars) {
        pybind11::gil_scoped_release release;
        self.Run(prog, scope, block_id, create_local_scope, create_vars);
      });
S
sneaxiy 已提交
563

D
dzhwinter 已提交
564
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
565
  m.def("init_glog", framework::InitGLOG);
X
Xin Pan 已提交
566 567
  m.def("init_devices",
        [](bool init_p2p) { framework::InitDevices(init_p2p); });
568

569
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
Y
update  
Yancey1989 已提交
570
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
571 572 573 574 575 576
#ifdef PADDLE_WITH_CUDA
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
577

578
  m.def("set_feed_variable", framework::SetFeedVariable);
Q
qijun 已提交
579
  m.def("get_fetch_variable", framework::GetFetchVariable);
Q
qijun 已提交
580

X
Xin Pan 已提交
581 582
  m.def("_is_program_version_supported", IsProgramVersionSupported);

583 584 585 586 587
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
  BindConstValue(&m);
Y
Yu Yang 已提交
588

Y
Yu Yang 已提交
589 590 591 592 593 594 595 596 597
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Y
Yu Yang 已提交
598
  py::class_<LoDTensorArray>(m, "LoDTensorArray")
S
sneaxiy 已提交
599 600
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
             PADDLE_ENFORCE_LT(i, self.size());
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
      .def("append", [](LoDTensorArray &self, const LoDTensor &t) {
        self.emplace_back();
        self.back().ShareDataWith(t);
        self.back().set_lod(t.lod());
      });

D
dzhwinter 已提交
617 618 619
  m.def("IsInplace",
        [](std::string op) -> bool { return operators::IsInplace(op); });

Y
Yu Yang 已提交
620
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
621
#ifdef PADDLE_WITH_CUDA
D
Dong Zhihong 已提交
622
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
623

P
peizhilin 已提交
624
#ifndef _WIN32
D
dangqingqing 已提交
625 626 627
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
D
Dong Zhihong 已提交
628
#endif
P
peizhilin 已提交
629
#endif
Y
Yu Yang 已提交
630

631 632 633 634
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
635
      .value("kAll", platform::ProfilerState::kAll)
636 637 638 639 640 641 642 643 644 645 646 647 648
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
649
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
650
  m.def("reset_profiler", platform::ResetProfiler);
Y
Yu Yang 已提交
651

652 653
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
654 655 656 657 658
      .def(
          "set_str",
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
X
Xin Pan 已提交
659 660 661
      .def("set_int", [](ir::Pass &self, const std::string &name,
                         int val) { self.Set<const int>(name, new int(val)); })
      .def("type", &ir::Pass::Type);
662

X
fix  
Xin Pan 已提交
663 664
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
665 666 667 668 669 670 671 672 673 674 675 676 677 678
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
679
  // -- python binds for parallel executor.
Y
yuyang18 已提交
680
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
681 682 683 684
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

C
chengduo 已提交
685 686 687 688 689 690 691 692 693 694 695
    Examples:
        .. code-block:: python

          exec_strategy = fluid.ExecutionStrategy()
          exec_strategy.num_threads = 4

          train_exe = fluid.ParallelExecutor(use_cuda=True,
                                             loss_name=loss.name,
                                             exec_strategy=exec_strategy)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
C
chengduo 已提交
696 697 698

        )DOC");

Y
yuyang18 已提交
699
  exec_strategy.def(py::init())
Y
yuyang18 已提交
700 701 702 703 704
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
705 706 707 708 709 710 711 712 713 714
          },
          R"DOC(The type is INT, num_threads represents the size of thread pool that
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
            `multiprocessing.cpu_count()`. Default 0.)DOC")
Y
yuyang18 已提交
715
      .def_property(
716 717 718 719
          "use_cuda",
          [](const ExecutionStrategy &self) { return self.use_cuda_; },
          [](ExecutionStrategy &self, bool use_cuda) {
            self.use_cuda_ = use_cuda;
C
chengduo 已提交
720 721 722 723
          })  // FIXME(chengduo): Doesn't add doc for 'use_cuda', use_cuda may
      // make user confuse, because ParallelExecutor has a parameter named
      // 'use_cuda' too, in current implementation, ParallelExecutor's
      // 'use_cuda' will rewrite ExecutionStrategy's 'use_cuda'.
Y
yuyang18 已提交
724 725 726 727 728
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
729 730 731 732
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
                Note that in some models, allow_op_delay may cause program hang. Default False.)DOC")
Y
yuyang18 已提交
733 734 735 736 737 738 739
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
740 741 742 743 744 745 746 747 748 749 750
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
                because the temp variable's shape maybe the same between two iterations. Default 100.

                NOTES:
                    1. If you fetch data when calling the 'run', the ParallelExecutor
                       will clean up the temp variables at the end of the current iteration.
                    2. In some NLP model, it may cause the GPU memory is insufficient,
                       in this case, you should reduce `num_iteration_per_drop_scope`.
751 752 753 754 755 756
              )DOC")
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
757

Y
yuyang18 已提交
758
  exec_strategy.def_property(
Y
yuyang18 已提交
759 760 761 762 763 764 765
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
766 767
      });

C
chengduo 已提交
768 769 770 771
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

C
chengduo 已提交
772 773 774 775 776 777 778 779 780 781 782
    Examples:
        .. code-block:: python

          build_strategy = fluid.BuildStrategy()
          build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce

          train_exe = fluid.ParallelExecutor(use_cuda=True,
                                             loss_name=loss.name,
                                             build_strategy=build_strategy)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
C
chengduo 已提交
783
)DOC");
Y
yuyang18 已提交
784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
X
Xin Pan 已提交
800
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
801
            self.reduce_ = strategy;
C
chengduo 已提交
802 803 804 805 806 807 808
          },
          R"DOC(The type is STR, there are two reduce strategies in ParallelExecutor,
                  'AllReduce' and 'Reduce'. If you want that all the parameters'
                  optimization are done on all devices independently, you should choose 'AllReduce';
                  if you choose 'Reduce', all the parameters' optimization will be evenly distributed
                  to different devices, and then broadcast the optimized parameter to other devices.
                  In some models, `Reduce` is faster. Default 'AllReduce'. )DOC")
Y
yuyang18 已提交
809 810 811 812 813
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
X
Xin Pan 已提交
814
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
815
            self.gradient_scale_ = strategy;
C
chengduo 已提交
816 817 818 819 820 821
          },
          R"DOC(The type is STR, there are three ways of defining :math:`loss@grad` in
                   ParallelExecutor, 'CoeffNumDevice', 'One' and 'Customized'. By default,
                   ParallelExecutor sets the :math:`loss@grad` according to the number of devices.
                   If you want to customize :math:`loss@grad`, you can choose 'Customized'.
                   Default 'CoeffNumDevice'.)DOC")
Y
yuyang18 已提交
822 823 824 825
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
X
Xin Pan 已提交
826
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
827
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
828 829 830 831
          },
          R"DOC(The type is STR, debug_graphviz_path indicate the path that
                    writing the SSA Graph to file in the form of graphviz, you.
                    It is useful for debugging. Default "")DOC")
F
fengjiayi 已提交
832 833 834
      .def_property(
          "enable_data_balance",
          [](const BuildStrategy &self) { return self.enable_data_balance_; },
C
chengduo 已提交
835
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
836
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
C
chengduo 已提交
837 838
            self.enable_data_balance_ = b;
          })  // FIXME(chengudo): enable_data_balance seems not important
S
sneaxiy 已提交
839 840 841 842 843 844
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
845
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
S
sneaxiy 已提交
846 847 848 849 850 851 852 853 854
            self.enable_sequential_execution_ = b;
          },
          R"DOC(The type is BOOL. If set True, the execution order of ops would be the same as what is in the program. Default False.)DOC")
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
855
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
S
sneaxiy 已提交
856 857 858
            self.remove_unnecessary_lock_ = b;
          },
          R"DOC(The type is BOOL. If set True, some locks in GPU ops would be released and ParallelExecutor would run faster. Default False.)DOC")
C
chengduo 已提交
859 860 861 862 863 864
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
865
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
C
chengduo 已提交
866 867 868 869 870
            self.fuse_elewise_add_act_ops_ = b;
          },
          R"DOC(The type is BOOL, fuse_elewise_add_act_ops indicate whether
                     to fuse elementwise_add_op and activation_op,
                     it may make the execution faster. Default False)DOC")
871
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
872
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
873 874 875 876 877
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
878 879 880 881

  pe.def(py::init<const std::vector<platform::Place> &,
                  const std::unordered_set<std::string> &,
                  const std::unordered_set<std::string> &, const ProgramDesc &,
Y
yuyang18 已提交
882
                  const std::string &, Scope *, std::vector<Scope *> &,
883 884
                  const ExecutionStrategy &, const BuildStrategy &, size_t,
                  size_t>())
Y
Yu Yang 已提交
885 886 887 888
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
889 890 891 892 893
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
894 895 896 897
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
S
sneaxiy 已提交
898 899 900 901 902 903
      .def("run", [](ParallelExecutor &self,
                     const std::vector<std::string> &fetch_tensors,
                     const std::string &fetched_var_name) {
        pybind11::gil_scoped_release release;
        self.Run(fetch_tensors, fetched_var_name);
      });
Y
Yu Yang 已提交
904

905
  BindRecordIOWriter(&m);
906
  return m.ptr();
L
Luo Tao 已提交
907
}
908
}  // namespace pybind
909
}  // namespace paddle