README.md 8.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# 自动化压缩

目录:
- [1.简介](#1简介)
- [2.Benchmark](#2Benchmark)
- [3.开始自动压缩](#自动压缩流程)
  - [3.1 环境准备](#31-准备环境)
  - [3.2 准备数据集](#32-准备数据集)
  - [3.3 准备预测模型](#33-准备预测模型)
  - [3.4 测试模型精度](#34-测试模型精度)
  - [3.5 自动压缩并产出模型](#35-自动压缩并产出模型)
- [4.预测部署](#4预测部署)

## 1. 简介
15
本示例使用PaddleDetection中Inference部署模型进行自动化压缩,使用的自动化压缩策略为量化蒸馏。
16 17 18 19


## 2.Benchmark

G
Guanghua Yu 已提交
20
### PP-YOLOE+
21 22 23

| 模型  | Base mAP | 离线量化mAP | ACT量化mAP | TRT-FP32 | TRT-FP16 | TRT-INT8 |  配置文件 | 量化模型  |
| :-------- |:-------- |:--------: | :---------------------: | :----------------: | :----------------: | :---------------: | :----------------------: | :---------------------: |
G
Guanghua Yu 已提交
24 25 26 27
| PP-YOLOE+_s	 | 43.7  |  - | 42.9  |   -  |   -   |  -  |  [config](./configs/ppyoloe_plus_s_qat_dis.yaml) | [Quant Model](https://bj.bcebos.com/v1/paddledet/deploy/Inference/ppyoloe_plus_s_qat_dis.tar) |
| PP-YOLOE+_m | 49.8  |  - | 49.3  |   -  |   -   |  -  |  [config](./configs/ppyoloe_plus_m_qat_dis.yaml) | [Quant Model](https://bj.bcebos.com/v1/paddledet/deploy/Inference/ppyoloe_plus_m_qat_dis.tar) |
| PP-YOLOE+_l | 52.9  |  - | 52.6  |   -  |   -   |  -  |  [config](./configs/ppyoloe_plus_l_qat_dis.yaml) | [Quant Model](https://bj.bcebos.com/v1/paddledet/deploy/Inference/ppyoloe_plus_l_qat_dis.tar) |
| PP-YOLOE+_x | 54.7  |  - | 54.4  |   -  |   -   |  -  |  [config](./configs/ppyoloe_plus_x_qat_dis.yaml) | [Quant Model](https://bj.bcebos.com/v1/paddledet/deploy/Inference/ppyoloe_plus_x_qat_dis.tar) |
28 29 30

- mAP的指标均在COCO val2017数据集中评测得到,IoU=0.5:0.95。

G
Guanghua Yu 已提交
31
### YOLOv8
32

G
Guanghua Yu 已提交
33 34 35
| 模型  | Base mAP | 离线量化mAP | ACT量化mAP | TRT-FP32 | TRT-FP16 | TRT-INT8 |  配置文件 | 量化模型  |
| :-------- |:-------- |:--------: | :---------------------: | :----------------: | :----------------: | :---------------: | :----------------------: | :---------------------: |
| YOLOv8-s | 44.9 |  43.9 | 44.3  |   9.27ms  |   4.65ms   |  **3.78ms**  |  [config](https://github.com/PaddlePaddle/PaddleSlim/blob/develop/example/auto_compression/detection/configs/yolov8_s_qat_dis.yaml) | [Model](https://bj.bcebos.com/v1/paddle-slim-models/act/yolov8_s_500e_coco_trt_nms_quant.tar) |
36

G
Guanghua Yu 已提交
37 38
**注意:**
- 表格中YOLOv8模型均为带NMS的模型,可直接在TRT中部署,如果需要对齐测试标准,需要测试不带NMS的模型。
39
- mAP的指标均在COCO val2017数据集中评测得到,IoU=0.5:0.95。
G
Guanghua Yu 已提交
40
- 表格中的性能在Tesla T4的GPU环境下测试,并且开启TensorRT,batch_size=1。
41

G
Guanghua Yu 已提交
42
### PP-YOLOE
W
Wenyu 已提交
43 44 45

| 模型  | Base mAP | 离线量化mAP | ACT量化mAP | TRT-FP32 | TRT-FP16 | TRT-INT8 |  配置文件 | 量化模型  |
| :-------- |:-------- |:--------: | :---------------------: | :----------------: | :----------------: | :---------------: | :----------------------: | :---------------------: |
46 47
| PP-YOLOE-l | 50.9  |  - | 50.6  |   11.2ms  |   7.7ms   |  **6.7ms**  |  [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/deploy/auto_compression/configs/ppyoloe_l_qat_dis.yaml) | [Quant Model](https://bj.bcebos.com/v1/paddle-slim-models/act/ppyoloe_crn_l_300e_coco_quant.tar) |
| PP-YOLOE-SOD | 38.5  |  - | 37.6  |   -  |   -   |  -  |  [config](./configs/ppyoloe_crn_l_80e_sliced_visdrone_640_025_qat.yml) | [Quant Model](https://bj.bcebos.com/v1/paddle-slim-models/act/ppyoloe_sod_visdrone.tar) |
W
Wenyu 已提交
48

49 50

- PP-YOLOE-l mAP的指标在COCO val2017数据集中评测得到,IoU=0.5:0.95。
G
Guanghua Yu 已提交
51
- PP-YOLOE-l模型在Tesla V100的GPU环境下测试,并且开启TensorRT,batch_size=1,包含NMS,测试脚本是[benchmark demo](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.4/deploy/python)
52
- PP-YOLOE-SOD 的指标在VisDrone-DET数据集切图后的COCO格式[数据集](https://bj.bcebos.com/v1/paddledet/data/smalldet/visdrone_sliced.zip)中评测得到,IoU=0.5:0.95。定义文件[ppyoloe_crn_l_80e_sliced_visdrone_640_025.yml](../../configs/smalldet/ppyoloe_crn_l_80e_sliced_visdrone_640_025.yml)
W
Wenyu 已提交
53

G
Guanghua Yu 已提交
54 55 56 57
### PP-PicoDet

| 模型  | 策略 | mAP | FP32 | FP16 | INT8 |  配置文件 | 模型  |
| :-------- |:-------- |:--------: | :----------------: | :----------------: | :---------------: | :----------------------: | :---------------------: |
W
wangguanzhong 已提交
58
| PicoDet-S-NPU | Baseline | 30.1   |   -   |  -  |  -  | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.6/configs/picodet/picodet_s_416_coco_npu.yml) | [Model](https://bj.bcebos.com/v1/paddle-slim-models/act/picodet_s_416_coco_npu.tar) |
G
Guanghua Yu 已提交
59
| PicoDet-S-NPU |  量化训练 | 29.7  |   -  |   -   |  -  |  [config](https://github.com/PaddlePaddle/PaddleSlim/tree/develop/demo/full_quantization/detection/configs/picodet_s_qat_dis.yaml) | [Model](https://bj.bcebos.com/v1/paddle-slim-models/act/picodet_s_npu_quant.tar) |
W
Wenyu 已提交
60

G
Guanghua Yu 已提交
61
- mAP的指标均在COCO val2017数据集中评测得到,IoU=0.5:0.95。
W
Wenyu 已提交
62

63 64 65
## 3. 自动压缩流程

#### 3.1 准备环境
G
Guanghua Yu 已提交
66 67 68
- PaddlePaddle >= 2.4 (可从[Paddle官网](https://www.paddlepaddle.org.cn/install/quick?docurl=/documentation/docs/zh/install/pip/linux-pip.html)下载安装)
- PaddleSlim >= 2.4.1
- PaddleDet >= 2.5
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
- opencv-python

安装paddlepaddle:
```shell
# CPU
pip install paddlepaddle
# GPU
pip install paddlepaddle-gpu
```

安装paddleslim:
```shell
pip install paddleslim
```

安装paddledet:
```shell
pip install paddledet
```

G
Guanghua Yu 已提交
89 90
**注意:** YOLOv8模型的自动化压缩需要依赖安装最新[Develop Paddle](https://www.paddlepaddle.org.cn/install/quick?docurl=/documentation/docs/zh/develop/install/pip/linux-pip.html)[Develop PaddleSlim](https://github.com/PaddlePaddle/PaddleSlim#%E5%AE%89%E8%A3%85)版本。

91 92
#### 3.2 准备数据集

W
wangguanzhong 已提交
93
本案例默认以COCO数据进行自动压缩实验,如果自定义COCO数据,或者其他格式数据,请参考[数据准备文档](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.6/docs/tutorials/data/PrepareDataSet.md) 来准备数据。
94 95 96 97 98 99 100 101 102 103

如果数据集为非COCO格式数据,请修改[configs](./configs)中reader配置文件中的Dataset字段。

以PP-YOLOE模型为例,如果已经准备好数据集,请直接修改[./configs/yolo_reader.yml]中`EvalDataset``dataset_dir`字段为自己数据集路径即可。

#### 3.3 准备预测模型

预测模型的格式为:`model.pdmodel``model.pdiparams`两个,带`pdmodel`的是模型文件,带`pdiparams`后缀的是权重文件。


W
wangguanzhong 已提交
104
根据[PaddleDetection文档](https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.6/docs/tutorials/GETTING_STARTED_cn.md#8-%E6%A8%A1%E5%9E%8B%E5%AF%BC%E5%87%BA) 导出Inference模型,具体可参考下方PP-YOLOE模型的导出示例:
105 106 107 108 109 110 111 112 113 114 115 116 117 118
- 下载代码
```
git clone https://github.com/PaddlePaddle/PaddleDetection.git
```
- 导出预测模型

PPYOLOE-l模型,包含NMS:如快速体验,可直接下载[PP-YOLOE-l导出模型](https://bj.bcebos.com/v1/paddle-slim-models/act/ppyoloe_crn_l_300e_coco.tar)
```shell
python tools/export_model.py \
        -c configs/ppyoloe/ppyoloe_crn_l_300e_coco.yml \
        -o weights=https://paddledet.bj.bcebos.com/models/ppyoloe_crn_l_300e_coco.pdparams \
        trt=True \
```

G
Guanghua Yu 已提交
119 120 121 122 123 124 125 126 127 128
YOLOv8-s模型,包含NMS,具体可参考[YOLOv8模型文档](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov8), 然后执行:
```shell
python tools/export_model.py \
        -c configs/yolov8/yolov8_s_500e_coco.yml \
        -o weights=https://paddledet.bj.bcebos.com/models/yolov8_s_500e_coco.pdparams \
        trt=True
```

如快速体验,可直接下载[YOLOv8-s导出模型](https://bj.bcebos.com/v1/paddle-slim-models/act/yolov8_s_500e_coco_trt_nms.tar)

129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
#### 3.4 自动压缩并产出模型

蒸馏量化自动压缩示例通过run.py脚本启动,会使用接口```paddleslim.auto_compression.AutoCompression```对模型进行自动压缩。配置config文件中模型路径、蒸馏、量化、和训练等部分的参数,配置完成后便可对模型进行量化和蒸馏。具体运行命令为:

- 单卡训练:
```
export CUDA_VISIBLE_DEVICES=0
python run.py --config_path=./configs/ppyoloe_l_qat_dis.yaml --save_dir='./output/'
```

- 多卡训练:
```
CUDA_VISIBLE_DEVICES=0,1,2,3 python -m paddle.distributed.launch --log_dir=log --gpus 0,1,2,3 run.py \
          --config_path=./configs/ppyoloe_l_qat_dis.yaml --save_dir='./output/'
```

#### 3.5 测试模型精度

使用eval.py脚本得到模型的mAP:
```
export CUDA_VISIBLE_DEVICES=0
python eval.py --config_path=./configs/ppyoloe_l_qat_dis.yaml
```

**注意**
- 要测试的模型路径可以在配置文件中`model_dir`字段下进行修改。

## 4.预测部署

- 可以参考[PaddleDetection部署教程](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.4/deploy),GPU上量化模型开启TensorRT并设置trt_int8模式进行部署。