未验证 提交 6e3708e9 编写于 作者: L LokeZhou 提交者: GitHub

[cherry-pick]PPyolo sod qat (#7990) (#8000)

* add ppyoloe_sod_qat

* ppyoloe sod qat

* add ppyoloe_sod qat demo

* fix ppyoloe sod qat yml

* add ppyoloe-sod ppyoloe_tiny qat

* add ppyoloe_sod_qat readme
上级 d4bbebf3
......@@ -43,10 +43,13 @@
| 模型 | Base mAP | 离线量化mAP | ACT量化mAP | TRT-FP32 | TRT-FP16 | TRT-INT8 | 配置文件 | 量化模型 |
| :-------- |:-------- |:--------: | :---------------------: | :----------------: | :----------------: | :---------------: | :----------------------: | :---------------------: |
| PP-YOLOE-l | 50.9 | - | 50.6 | 11.2ms | 7.7ms | **6.7ms** | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.6/deploy/auto_compression/configs/ppyoloe_l_qat_dis.yaml) | [Quant Model](https://bj.bcebos.com/v1/paddle-slim-models/act/ppyoloe_crn_l_300e_coco_quant.tar) |
| PP-YOLOE-l | 50.9 | - | 50.6 | 11.2ms | 7.7ms | **6.7ms** | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/deploy/auto_compression/configs/ppyoloe_l_qat_dis.yaml) | [Quant Model](https://bj.bcebos.com/v1/paddle-slim-models/act/ppyoloe_crn_l_300e_coco_quant.tar) |
| PP-YOLOE-SOD | 38.5 | - | 37.6 | - | - | - | [config](./configs/ppyoloe_crn_l_80e_sliced_visdrone_640_025_qat.yml) | [Quant Model](https://bj.bcebos.com/v1/paddle-slim-models/act/ppyoloe_sod_visdrone.tar) |
- mAP的指标均在COCO val2017数据集中评测得到,IoU=0.5:0.95。
- PP-YOLOE-l mAP的指标在COCO val2017数据集中评测得到,IoU=0.5:0.95。
- PP-YOLOE-l模型在Tesla V100的GPU环境下测试,并且开启TensorRT,batch_size=1,包含NMS,测试脚本是[benchmark demo](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.4/deploy/python)
- PP-YOLOE-SOD 的指标在VisDrone-DET数据集切图后的COCO格式[数据集](https://bj.bcebos.com/v1/paddledet/data/smalldet/visdrone_sliced.zip)中评测得到,IoU=0.5:0.95。定义文件[ppyoloe_crn_l_80e_sliced_visdrone_640_025.yml](../../configs/smalldet/ppyoloe_crn_l_80e_sliced_visdrone_640_025.yml)
### PP-PicoDet
......
Global:
reader_config: configs/ppyoloe_crn_l_80e_sliced_visdrone_640_025_reader.yml
input_list: ['image', 'scale_factor']
arch: YOLO
include_nms: True
Evaluation: True
model_dir: ../../output_inference/ppyoloe_crn_l_80e_sliced_visdrone_640_025
model_filename: model.pdmodel
params_filename: model.pdiparams
Distillation:
alpha: 1.0
loss: soft_label
QuantAware:
onnx_format: True
use_pact: False
activation_quantize_type: 'moving_average_abs_max'
quantize_op_types:
- conv2d
- depthwise_conv2d
TrainConfig:
train_iter: 8000
eval_iter: 500
learning_rate:
type: CosineAnnealingDecay
learning_rate: 0.00003
T_max: 6000
optimizer_builder:
optimizer:
type: SGD
weight_decay: 4.0e-05
metric: COCO
num_classes: 10
# Datset configuration
TrainDataset:
!COCODataSet
image_dir: train_images_640_025
anno_path: train_640_025.json
dataset_dir: dataset/visdrone_sliced
EvalDataset:
!COCODataSet
image_dir: val_images_640_025
anno_path: val_640_025.json
dataset_dir: dataset/visdrone_sliced
worker_num: 0
# preprocess reader in test
EvalReader:
sample_transforms:
- Decode: {}
- Resize: {target_size: [640, 640], keep_ratio: False, interp: 2}
#- NormalizeImage: {mean: [0., 0., 0.], std: [1., 1., 1.], norm_type: none}
- Permute: {}
batch_size: 16
Global:
reader_config: configs/ppyoloe_plus_reader.yml
include_nms: True
Evaluation: True
model_dir: ../../output_inference/ppyoloe_plus_crn_t_auxhead_300e_coco/
model_filename: model.pdmodel
params_filename: model.pdiparams
Distillation:
alpha: 1.0
loss: soft_label
QuantAware:
onnx_format: True
use_pact: False
activation_quantize_type: 'moving_average_abs_max'
quantize_op_types:
- conv2d
- depthwise_conv2d
TrainConfig:
train_iter: 8000
eval_iter: 1000
learning_rate:
type: CosineAnnealingDecay
learning_rate: 0.00003
T_max: 6000
optimizer_builder:
optimizer:
type: SGD
weight_decay: 4.0e-05
Global:
reader_config: configs/ppyoloe_plus_reader.yml
include_nms: True
Evaluation: True
model_dir: ../../output_inference/ppyoloe_plus_sod_crn_l_80e_coco
model_filename: model.pdmodel
params_filename: model.pdiparams
Distillation:
alpha: 1.0
loss: soft_label
QuantAware:
onnx_format: True
use_pact: true
activation_quantize_type: 'moving_average_abs_max'
quantize_op_types:
- conv2d
- depthwise_conv2d
TrainConfig:
train_iter: 1
eval_iter: 1
learning_rate:
type: CosineAnnealingDecay
learning_rate: 0.00003
T_max: 6000
optimizer_builder:
optimizer:
type: SGD
weight_decay: 4.0e-05
#opyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import argparse
import time
import sys
import cv2
import numpy as np
import paddle
from paddle.inference import Config
from paddle.inference import create_predictor
from ppdet.core.workspace import load_config, create
from ppdet.metrics import COCOMetric
from post_process import PPYOLOEPostProcess
def argsparser():
"""
argsparser func
"""
parser = argparse.ArgumentParser()
parser.add_argument(
"--model_path", type=str, help="inference model filepath")
parser.add_argument(
"--image_file",
type=str,
default=None,
help="image path, if set image_file, it will not eval coco.")
parser.add_argument(
"--reader_config",
type=str,
default=None,
help="path of datset and reader config.")
parser.add_argument(
"--benchmark",
type=bool,
default=False,
help="Whether run benchmark or not.")
parser.add_argument(
"--use_trt",
type=bool,
default=False,
help="Whether use TensorRT or not.")
parser.add_argument(
"--precision",
type=str,
default="paddle",
help="mode of running(fp32/fp16/int8)")
parser.add_argument(
"--device",
type=str,
default="GPU",
help="Choose the device you want to run, it can be: CPU/GPU/XPU, default is GPU",
)
parser.add_argument(
"--use_dynamic_shape",
type=bool,
default=True,
help="Whether use dynamic shape or not.")
parser.add_argument(
"--use_mkldnn",
type=bool,
default=False,
help="Whether use mkldnn or not.")
parser.add_argument(
"--cpu_threads", type=int, default=10, help="Num of cpu threads.")
parser.add_argument("--img_shape", type=int, default=640, help="input_size")
parser.add_argument(
'--include_nms',
type=bool,
default=True,
help="Whether include nms or not.")
return parser
CLASS_LABEL = [
'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train',
'truck', 'boat', 'traffic light', 'fire hydrant', 'stop sign',
'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag',
'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball', 'kite',
'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon',
'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot',
'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', 'potted plant',
'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote',
'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink',
'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
'hair drier', 'toothbrush'
]
def generate_scale(im, target_shape, keep_ratio=True):
"""
Args:
im (np.ndarray): image (np.ndarray)
Returns:
im_scale_x: the resize ratio of X
im_scale_y: the resize ratio of Y
"""
origin_shape = im.shape[:2]
if keep_ratio:
im_size_min = np.min(origin_shape)
im_size_max = np.max(origin_shape)
target_size_min = np.min(target_shape)
target_size_max = np.max(target_shape)
im_scale = float(target_size_min) / float(im_size_min)
if np.round(im_scale * im_size_max) > target_size_max:
im_scale = float(target_size_max) / float(im_size_max)
im_scale_x = im_scale
im_scale_y = im_scale
else:
resize_h, resize_w = target_shape
im_scale_y = resize_h / float(origin_shape[0])
im_scale_x = resize_w / float(origin_shape[1])
return im_scale_y, im_scale_x
def image_preprocess(img_path, target_shape):
"""
image_preprocess func
"""
img = cv2.imread(img_path)
im_scale_y, im_scale_x = generate_scale(img, target_shape, keep_ratio=False)
img = cv2.resize(
img, (target_shape[0], target_shape[0]),
interpolation=cv2.INTER_LANCZOS4)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img = np.transpose(img, [2, 0, 1]) / 255
img = np.expand_dims(img, 0)
img_mean = np.array([0.485, 0.456, 0.406]).reshape((3, 1, 1))
img_std = np.array([0.229, 0.224, 0.225]).reshape((3, 1, 1))
img -= img_mean
img /= img_std
scale_factor = np.array([[im_scale_y, im_scale_x]])
return img.astype(np.float32), scale_factor.astype(np.float32)
def get_color_map_list(num_classes):
"""
get_color_map_list func
"""
color_map = num_classes * [0, 0, 0]
for i in range(0, num_classes):
j = 0
lab = i
while lab:
color_map[i * 3] |= ((lab >> 0) & 1) << (7 - j)
color_map[i * 3 + 1] |= ((lab >> 1) & 1) << (7 - j)
color_map[i * 3 + 2] |= ((lab >> 2) & 1) << (7 - j)
j += 1
lab >>= 3
color_map = [color_map[i:i + 3] for i in range(0, len(color_map), 3)]
return color_map
def draw_box(image_file, results, class_label, threshold=0.5):
"""
draw_box func
"""
srcimg = cv2.imread(image_file, 1)
for i in range(len(results)):
color_list = get_color_map_list(len(class_label))
clsid2color = {}
classid, conf = int(results[i, 0]), results[i, 1]
if conf < threshold:
continue
xmin, ymin, xmax, ymax = int(results[i, 2]), int(results[i, 3]), int(
results[i, 4]), int(results[i, 5])
if classid not in clsid2color:
clsid2color[classid] = color_list[classid]
color = tuple(clsid2color[classid])
cv2.rectangle(srcimg, (xmin, ymin), (xmax, ymax), color, thickness=2)
print(class_label[classid] + ": " + str(round(conf, 3)))
cv2.putText(
srcimg,
class_label[classid] + ":" + str(round(conf, 3)),
(xmin, ymin - 10),
cv2.FONT_HERSHEY_SIMPLEX,
0.8,
(0, 255, 0),
thickness=2, )
return srcimg
def load_predictor(
model_dir,
precision="fp32",
use_trt=False,
use_mkldnn=False,
batch_size=1,
device="CPU",
min_subgraph_size=3,
use_dynamic_shape=False,
trt_min_shape=1,
trt_max_shape=1280,
trt_opt_shape=640,
cpu_threads=1, ):
"""set AnalysisConfig, generate AnalysisPredictor
Args:
model_dir (str): root path of __model__ and __params__
precision (str): mode of running(fp32/fp16/int8)
use_trt (bool): whether use TensorRT or not.
use_mkldnn (bool): whether use MKLDNN or not in CPU.
device (str): Choose the device you want to run, it can be: CPU/GPU, default is CPU
use_dynamic_shape (bool): use dynamic shape or not
trt_min_shape (int): min shape for dynamic shape in trt
trt_max_shape (int): max shape for dynamic shape in trt
trt_opt_shape (int): opt shape for dynamic shape in trt
Returns:
predictor (PaddlePredictor): AnalysisPredictor
Raises:
ValueError: predict by TensorRT need device == 'GPU'.
"""
rerun_flag = False
if device != "GPU" and use_trt:
raise ValueError(
"Predict by TensorRT mode: {}, expect device=='GPU', but device == {}".
format(precision, device))
config = Config(
os.path.join(model_dir, "model.pdmodel"),
os.path.join(model_dir, "model.pdiparams"))
if device == "GPU":
# initial GPU memory(M), device ID
config.enable_use_gpu(200, 0)
# optimize graph and fuse op
config.switch_ir_optim(True)
else:
config.disable_gpu()
config.set_cpu_math_library_num_threads(cpu_threads)
config.switch_ir_optim()
if use_mkldnn:
config.enable_mkldnn()
if precision == "int8":
config.enable_mkldnn_int8(
{"conv2d", "depthwise_conv2d", "transpose2", "pool2d"})
precision_map = {
"int8": Config.Precision.Int8,
"fp32": Config.Precision.Float32,
"fp16": Config.Precision.Half,
}
if precision in precision_map.keys() and use_trt:
config.enable_tensorrt_engine(
workspace_size=(1 << 25) * batch_size,
max_batch_size=batch_size,
min_subgraph_size=min_subgraph_size,
precision_mode=precision_map[precision],
use_static=True,
use_calib_mode=False, )
if use_dynamic_shape:
dynamic_shape_file = os.path.join(FLAGS.model_path,
"dynamic_shape.txt")
if os.path.exists(dynamic_shape_file):
config.enable_tuned_tensorrt_dynamic_shape(dynamic_shape_file,
True)
print("trt set dynamic shape done!")
else:
config.collect_shape_range_info(dynamic_shape_file)
print("Start collect dynamic shape...")
rerun_flag = True
# enable shared memory
config.enable_memory_optim()
predictor = create_predictor(config)
return predictor, rerun_flag
def get_current_memory_mb():
"""
It is used to Obtain the memory usage of the CPU and GPU during the running of the program.
And this function Current program is time-consuming.
"""
try:
pkg.require('pynvml')
except:
from pip._internal import main
main(['install', 'pynvml'])
try:
pkg.require('psutil')
except:
from pip._internal import main
main(['install', 'psutil'])
try:
pkg.require('GPUtil')
except:
from pip._internal import main
main(['install', 'GPUtil'])
import pynvml
import psutil
import GPUtil
gpu_id = int(os.environ.get("CUDA_VISIBLE_DEVICES", 0))
pid = os.getpid()
p = psutil.Process(pid)
info = p.memory_full_info()
cpu_mem = info.uss / 1024.0 / 1024.0
gpu_mem = 0
gpu_percent = 0
gpus = GPUtil.getGPUs()
if gpu_id is not None and len(gpus) > 0:
gpu_percent = gpus[gpu_id].load
pynvml.nvmlInit()
handle = pynvml.nvmlDeviceGetHandleByIndex(0)
meminfo = pynvml.nvmlDeviceGetMemoryInfo(handle)
gpu_mem = meminfo.used / 1024.0 / 1024.0
return round(cpu_mem, 4), round(gpu_mem, 4)
def predict_image(predictor,
image_file,
image_shape=[640, 640],
warmup=1,
repeats=1,
threshold=0.5):
"""
predict image main func
"""
img, scale_factor = image_preprocess(image_file, image_shape)
inputs = {}
inputs["image"] = img
if FLAGS.include_nms:
inputs['scale_factor'] = scale_factor
input_names = predictor.get_input_names()
for i, _ in enumerate(input_names):
input_tensor = predictor.get_input_handle(input_names[i])
input_tensor.copy_from_cpu(inputs[input_names[i]])
for i in range(warmup):
predictor.run()
np_boxes, np_boxes_num = None, None
cpu_mems, gpu_mems = 0, 0
predict_time = 0.0
time_min = float("inf")
time_max = float("-inf")
for i in range(repeats):
start_time = time.time()
predictor.run()
output_names = predictor.get_output_names()
boxes_tensor = predictor.get_output_handle(output_names[0])
np_boxes = boxes_tensor.copy_to_cpu()
if FLAGS.include_nms:
boxes_num = predictor.get_output_handle(output_names[1])
np_boxes_num = boxes_num.copy_to_cpu()
end_time = time.time()
timed = end_time - start_time
time_min = min(time_min, timed)
time_max = max(time_max, timed)
predict_time += timed
cpu_mem, gpu_mem = get_current_memory_mb()
cpu_mems += cpu_mem
gpu_mems += gpu_mem
time_avg = predict_time / repeats
print("[Benchmark]Avg cpu_mem:{} MB, avg gpu_mem: {} MB".format(
cpu_mems / repeats, gpu_mems / repeats))
print("[Benchmark]Inference time(ms): min={}, max={}, avg={}".format(
round(time_min * 1000, 2),
round(time_max * 1000, 1), round(time_avg * 1000, 1)))
if not FLAGS.include_nms:
postprocess = PPYOLOEPostProcess(score_threshold=0.3, nms_threshold=0.6)
res = postprocess(np_boxes, scale_factor)
else:
res = {'bbox': np_boxes, 'bbox_num': np_boxes_num}
res_img = draw_box(
image_file, res["bbox"], CLASS_LABEL, threshold=threshold)
cv2.imwrite("result.jpg", res_img)
def eval(predictor, val_loader, metric, rerun_flag=False):
"""
eval main func
"""
cpu_mems, gpu_mems = 0, 0
predict_time = 0.0
time_min = float("inf")
time_max = float("-inf")
sample_nums = len(val_loader)
input_names = predictor.get_input_names()
output_names = predictor.get_output_names()
boxes_tensor = predictor.get_output_handle(output_names[0])
if FLAGS.include_nms:
boxes_num = predictor.get_output_handle(output_names[1])
for batch_id, data in enumerate(val_loader):
data_all = {k: np.array(v) for k, v in data.items()}
for i, _ in enumerate(input_names):
input_tensor = predictor.get_input_handle(input_names[i])
input_tensor.copy_from_cpu(data_all[input_names[i]])
start_time = time.time()
predictor.run()
np_boxes = boxes_tensor.copy_to_cpu()
if FLAGS.include_nms:
np_boxes_num = boxes_num.copy_to_cpu()
if rerun_flag:
return
end_time = time.time()
timed = end_time - start_time
time_min = min(time_min, timed)
time_max = max(time_max, timed)
predict_time += timed
cpu_mem, gpu_mem = get_current_memory_mb()
cpu_mems += cpu_mem
gpu_mems += gpu_mem
if not FLAGS.include_nms:
postprocess = PPYOLOEPostProcess(
score_threshold=0.3, nms_threshold=0.6)
res = postprocess(np_boxes, data_all['scale_factor'])
else:
res = {'bbox': np_boxes, 'bbox_num': np_boxes_num}
metric.update(data_all, res)
if batch_id % 100 == 0:
print("Eval iter:", batch_id)
sys.stdout.flush()
metric.accumulate()
metric.log()
map_res = metric.get_results()
metric.reset()
time_avg = predict_time / sample_nums
print("[Benchmark]Avg cpu_mem:{} MB, avg gpu_mem: {} MB".format(
cpu_mems / sample_nums, gpu_mems / sample_nums))
print("[Benchmark]Inference time(ms): min={}, max={}, avg={}".format(
round(time_min * 1000, 2),
round(time_max * 1000, 1), round(time_avg * 1000, 1)))
print("[Benchmark] COCO mAP: {}".format(map_res["bbox"][0]))
sys.stdout.flush()
def main():
"""
main func
"""
predictor, rerun_flag = load_predictor(
FLAGS.model_path,
device=FLAGS.device,
use_trt=FLAGS.use_trt,
use_mkldnn=FLAGS.use_mkldnn,
precision=FLAGS.precision,
use_dynamic_shape=FLAGS.use_dynamic_shape,
cpu_threads=FLAGS.cpu_threads)
if FLAGS.image_file:
warmup, repeats = 1, 1
if FLAGS.benchmark:
warmup, repeats = 50, 100
predict_image(
predictor,
FLAGS.image_file,
image_shape=[FLAGS.img_shape, FLAGS.img_shape],
warmup=warmup,
repeats=repeats)
else:
reader_cfg = load_config(FLAGS.reader_config)
dataset = reader_cfg["EvalDataset"]
global val_loader
val_loader = create("EvalReader")(reader_cfg["EvalDataset"],
reader_cfg["worker_num"],
return_list=True)
clsid2catid = {v: k for k, v in dataset.catid2clsid.items()}
anno_file = dataset.get_anno()
metric = COCOMetric(
anno_file=anno_file, clsid2catid=clsid2catid, IouType="bbox")
eval(predictor, val_loader, metric, rerun_flag=rerun_flag)
if rerun_flag:
print(
"***** Collect dynamic shape done, Please rerun the program to get correct results. *****"
)
if __name__ == "__main__":
paddle.enable_static()
parser = argsparser()
FLAGS = parser.parse_args()
# DataLoader need run on cpu
paddle.set_device("cpu")
main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册