iou_loss.py 10.0 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

G
Guanghua Yu 已提交
19
import numpy as np
N
nihao 已提交
20
import math
Q
qingqing01 已提交
21
import paddle
M
Manuel Garcia 已提交
22

Q
qingqing01 已提交
23
from ppdet.core.workspace import register, serializable
M
Manuel Garcia 已提交
24
from ..bbox_utils import bbox_iou
Q
qingqing01 已提交
25

N
nihao 已提交
26
__all__ = ['IouLoss', 'GIoULoss', 'DIouLoss', 'SIoULoss']
Q
qingqing01 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54


@register
@serializable
class IouLoss(object):
    """
    iou loss, see https://arxiv.org/abs/1908.03851
    loss = 1.0 - iou * iou
    Args:
        loss_weight (float): iou loss weight, default is 2.5
        max_height (int): max height of input to support random shape input
        max_width (int): max width of input to support random shape input
        ciou_term (bool): whether to add ciou_term
        loss_square (bool): whether to square the iou term
    """

    def __init__(self,
                 loss_weight=2.5,
                 giou=False,
                 diou=False,
                 ciou=False,
                 loss_square=True):
        self.loss_weight = loss_weight
        self.giou = giou
        self.diou = diou
        self.ciou = ciou
        self.loss_square = loss_square

W
wangxinxin08 已提交
55
    def __call__(self, pbox, gbox):
Q
qingqing01 已提交
56 57 58 59 60 61 62 63 64
        iou = bbox_iou(
            pbox, gbox, giou=self.giou, diou=self.diou, ciou=self.ciou)
        if self.loss_square:
            loss_iou = 1 - iou * iou
        else:
            loss_iou = 1 - iou

        loss_iou = loss_iou * self.loss_weight
        return loss_iou
F
Feng Ni 已提交
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112


@register
@serializable
class GIoULoss(object):
    """
    Generalized Intersection over Union, see https://arxiv.org/abs/1902.09630
    Args:
        loss_weight (float): giou loss weight, default as 1
        eps (float): epsilon to avoid divide by zero, default as 1e-10
        reduction (string): Options are "none", "mean" and "sum". default as none
    """

    def __init__(self, loss_weight=1., eps=1e-10, reduction='none'):
        self.loss_weight = loss_weight
        self.eps = eps
        assert reduction in ('none', 'mean', 'sum')
        self.reduction = reduction

    def bbox_overlap(self, box1, box2, eps=1e-10):
        """calculate the iou of box1 and box2
        Args:
            box1 (Tensor): box1 with the shape (..., 4)
            box2 (Tensor): box1 with the shape (..., 4)
            eps (float): epsilon to avoid divide by zero
        Return:
            iou (Tensor): iou of box1 and box2
            overlap (Tensor): overlap of box1 and box2
            union (Tensor): union of box1 and box2
        """
        x1, y1, x2, y2 = box1
        x1g, y1g, x2g, y2g = box2

        xkis1 = paddle.maximum(x1, x1g)
        ykis1 = paddle.maximum(y1, y1g)
        xkis2 = paddle.minimum(x2, x2g)
        ykis2 = paddle.minimum(y2, y2g)
        w_inter = (xkis2 - xkis1).clip(0)
        h_inter = (ykis2 - ykis1).clip(0)
        overlap = w_inter * h_inter

        area1 = (x2 - x1) * (y2 - y1)
        area2 = (x2g - x1g) * (y2g - y1g)
        union = area1 + area2 - overlap + eps
        iou = overlap / union

        return iou, overlap, union

W
wangguanzhong 已提交
113
    def __call__(self, pbox, gbox, iou_weight=1., loc_reweight=None):
F
Feng Ni 已提交
114 115 116 117 118 119 120 121 122 123 124 125
        x1, y1, x2, y2 = paddle.split(pbox, num_or_sections=4, axis=-1)
        x1g, y1g, x2g, y2g = paddle.split(gbox, num_or_sections=4, axis=-1)
        box1 = [x1, y1, x2, y2]
        box2 = [x1g, y1g, x2g, y2g]
        iou, overlap, union = self.bbox_overlap(box1, box2, self.eps)
        xc1 = paddle.minimum(x1, x1g)
        yc1 = paddle.minimum(y1, y1g)
        xc2 = paddle.maximum(x2, x2g)
        yc2 = paddle.maximum(y2, y2g)

        area_c = (xc2 - xc1) * (yc2 - yc1) + self.eps
        miou = iou - ((area_c - union) / area_c)
W
wangguanzhong 已提交
126 127 128 129 130 131 132
        if loc_reweight is not None:
            loc_reweight = paddle.reshape(loc_reweight, shape=(-1, 1))
            loc_thresh = 0.9
            giou = 1 - (1 - loc_thresh
                        ) * miou - loc_thresh * miou * loc_reweight
        else:
            giou = 1 - miou
F
Feng Ni 已提交
133 134 135 136 137 138 139
        if self.reduction == 'none':
            loss = giou
        elif self.reduction == 'sum':
            loss = paddle.sum(giou * iou_weight)
        else:
            loss = paddle.mean(giou * iou_weight)
        return loss * self.loss_weight
G
Guanghua Yu 已提交
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210


@register
@serializable
class DIouLoss(GIoULoss):
    """
    Distance-IoU Loss, see https://arxiv.org/abs/1911.08287
    Args:
        loss_weight (float): giou loss weight, default as 1
        eps (float): epsilon to avoid divide by zero, default as 1e-10
        use_complete_iou_loss (bool): whether to use complete iou loss
    """

    def __init__(self, loss_weight=1., eps=1e-10, use_complete_iou_loss=True):
        super(DIouLoss, self).__init__(loss_weight=loss_weight, eps=eps)
        self.use_complete_iou_loss = use_complete_iou_loss

    def __call__(self, pbox, gbox, iou_weight=1.):
        x1, y1, x2, y2 = paddle.split(pbox, num_or_sections=4, axis=-1)
        x1g, y1g, x2g, y2g = paddle.split(gbox, num_or_sections=4, axis=-1)
        cx = (x1 + x2) / 2
        cy = (y1 + y2) / 2
        w = x2 - x1
        h = y2 - y1

        cxg = (x1g + x2g) / 2
        cyg = (y1g + y2g) / 2
        wg = x2g - x1g
        hg = y2g - y1g

        x2 = paddle.maximum(x1, x2)
        y2 = paddle.maximum(y1, y2)

        # A and B
        xkis1 = paddle.maximum(x1, x1g)
        ykis1 = paddle.maximum(y1, y1g)
        xkis2 = paddle.minimum(x2, x2g)
        ykis2 = paddle.minimum(y2, y2g)

        # A or B
        xc1 = paddle.minimum(x1, x1g)
        yc1 = paddle.minimum(y1, y1g)
        xc2 = paddle.maximum(x2, x2g)
        yc2 = paddle.maximum(y2, y2g)

        intsctk = (xkis2 - xkis1) * (ykis2 - ykis1)
        intsctk = intsctk * paddle.greater_than(
            xkis2, xkis1) * paddle.greater_than(ykis2, ykis1)
        unionk = (x2 - x1) * (y2 - y1) + (x2g - x1g) * (y2g - y1g
                                                        ) - intsctk + self.eps
        iouk = intsctk / unionk

        # DIOU term
        dist_intersection = (cx - cxg) * (cx - cxg) + (cy - cyg) * (cy - cyg)
        dist_union = (xc2 - xc1) * (xc2 - xc1) + (yc2 - yc1) * (yc2 - yc1)
        diou_term = (dist_intersection + self.eps) / (dist_union + self.eps)

        # CIOU term
        ciou_term = 0
        if self.use_complete_iou_loss:
            ar_gt = wg / hg
            ar_pred = w / h
            arctan = paddle.atan(ar_gt) - paddle.atan(ar_pred)
            ar_loss = 4. / np.pi / np.pi * arctan * arctan
            alpha = ar_loss / (1 - iouk + ar_loss + self.eps)
            alpha.stop_gradient = True
            ciou_term = alpha * ar_loss

        diou = paddle.mean((1 - iouk + ciou_term + diou_term) * iou_weight)

        return diou * self.loss_weight
N
nihao 已提交
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295


@register
@serializable
class SIoULoss(GIoULoss):
    """
    see https://arxiv.org/pdf/2205.12740.pdf 
    Args:
        loss_weight (float): siou loss weight, default as 1
        eps (float): epsilon to avoid divide by zero, default as 1e-10
        theta (float): default as 4
        reduction (str): Options are "none", "mean" and "sum". default as none
    """

    def __init__(self, loss_weight=1., eps=1e-10, theta=4., reduction='none'):
        super(SIoULoss, self).__init__(loss_weight=loss_weight, eps=eps)
        self.loss_weight = loss_weight
        self.eps = eps
        self.theta = theta
        self.reduction = reduction

    def __call__(self, pbox, gbox):
        x1, y1, x2, y2 = paddle.split(pbox, num_or_sections=4, axis=-1)
        x1g, y1g, x2g, y2g = paddle.split(gbox, num_or_sections=4, axis=-1)

        box1 = [x1, y1, x2, y2]
        box2 = [x1g, y1g, x2g, y2g]
        iou = bbox_iou(box1, box2)

        cx = (x1 + x2) / 2
        cy = (y1 + y2) / 2
        w = x2 - x1 + self.eps
        h = y2 - y1 + self.eps

        cxg = (x1g + x2g) / 2
        cyg = (y1g + y2g) / 2
        wg = x2g - x1g + self.eps
        hg = y2g - y1g + self.eps

        x2 = paddle.maximum(x1, x2)
        y2 = paddle.maximum(y1, y2)

        # A or B
        xc1 = paddle.minimum(x1, x1g)
        yc1 = paddle.minimum(y1, y1g)
        xc2 = paddle.maximum(x2, x2g)
        yc2 = paddle.maximum(y2, y2g)

        cw_out = xc2 - xc1
        ch_out = yc2 - yc1

        ch = paddle.maximum(cy, cyg) - paddle.minimum(cy, cyg)
        cw = paddle.maximum(cx, cxg) - paddle.minimum(cx, cxg)

        # angle cost
        dist_intersection = paddle.sqrt((cx - cxg)**2 + (cy - cyg)**2)
        sin_angle_alpha = ch / dist_intersection
        sin_angle_beta = cw / dist_intersection
        thred = paddle.pow(paddle.to_tensor(2), 0.5) / 2
        thred.stop_gradient = True
        sin_alpha = paddle.where(sin_angle_alpha > thred, sin_angle_beta,
                                 sin_angle_alpha)
        angle_cost = paddle.cos(paddle.asin(sin_alpha) * 2 - math.pi / 2)

        # distance cost
        gamma = 2 - angle_cost
        # gamma.stop_gradient = True
        beta_x = ((cxg - cx) / cw_out)**2
        beta_y = ((cyg - cy) / ch_out)**2
        dist_cost = 1 - paddle.exp(-gamma * beta_x) + 1 - paddle.exp(-gamma *
                                                                     beta_y)

        # shape cost
        omega_w = paddle.abs(w - wg) / paddle.maximum(w, wg)
        omega_h = paddle.abs(hg - h) / paddle.maximum(h, hg)
        omega = (1 - paddle.exp(-omega_w))**self.theta + (
            1 - paddle.exp(-omega_h))**self.theta
        siou_loss = 1 - iou + (omega + dist_cost) / 2

        if self.reduction == 'mean':
            siou_loss = paddle.mean(siou_loss)
        elif self.reduction == 'sum':
            siou_loss = paddle.sum(siou_loss)

        return siou_loss * self.loss_weight