iou_loss.py 4.4 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import paddle
import paddle.nn.functional as F
from ppdet.core.workspace import register, serializable
W
wangguanzhong 已提交
22
from ..bbox_utils import xywh2xyxy, bbox_iou
Q
qingqing01 已提交
23

F
Feng Ni 已提交
24
__all__ = ['IouLoss', 'GIoULoss']
Q
qingqing01 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52


@register
@serializable
class IouLoss(object):
    """
    iou loss, see https://arxiv.org/abs/1908.03851
    loss = 1.0 - iou * iou
    Args:
        loss_weight (float): iou loss weight, default is 2.5
        max_height (int): max height of input to support random shape input
        max_width (int): max width of input to support random shape input
        ciou_term (bool): whether to add ciou_term
        loss_square (bool): whether to square the iou term
    """

    def __init__(self,
                 loss_weight=2.5,
                 giou=False,
                 diou=False,
                 ciou=False,
                 loss_square=True):
        self.loss_weight = loss_weight
        self.giou = giou
        self.diou = diou
        self.ciou = ciou
        self.loss_square = loss_square

W
wangxinxin08 已提交
53
    def __call__(self, pbox, gbox):
Q
qingqing01 已提交
54 55 56 57 58 59 60 61 62
        iou = bbox_iou(
            pbox, gbox, giou=self.giou, diou=self.diou, ciou=self.ciou)
        if self.loss_square:
            loss_iou = 1 - iou * iou
        else:
            loss_iou = 1 - iou

        loss_iou = loss_iou * self.loss_weight
        return loss_iou
F
Feng Ni 已提交
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131


@register
@serializable
class GIoULoss(object):
    """
    Generalized Intersection over Union, see https://arxiv.org/abs/1902.09630
    Args:
        loss_weight (float): giou loss weight, default as 1
        eps (float): epsilon to avoid divide by zero, default as 1e-10
        reduction (string): Options are "none", "mean" and "sum". default as none
    """

    def __init__(self, loss_weight=1., eps=1e-10, reduction='none'):
        self.loss_weight = loss_weight
        self.eps = eps
        assert reduction in ('none', 'mean', 'sum')
        self.reduction = reduction

    def bbox_overlap(self, box1, box2, eps=1e-10):
        """calculate the iou of box1 and box2
        Args:
            box1 (Tensor): box1 with the shape (..., 4)
            box2 (Tensor): box1 with the shape (..., 4)
            eps (float): epsilon to avoid divide by zero
        Return:
            iou (Tensor): iou of box1 and box2
            overlap (Tensor): overlap of box1 and box2
            union (Tensor): union of box1 and box2
        """
        x1, y1, x2, y2 = box1
        x1g, y1g, x2g, y2g = box2

        xkis1 = paddle.maximum(x1, x1g)
        ykis1 = paddle.maximum(y1, y1g)
        xkis2 = paddle.minimum(x2, x2g)
        ykis2 = paddle.minimum(y2, y2g)
        w_inter = (xkis2 - xkis1).clip(0)
        h_inter = (ykis2 - ykis1).clip(0)
        overlap = w_inter * h_inter

        area1 = (x2 - x1) * (y2 - y1)
        area2 = (x2g - x1g) * (y2g - y1g)
        union = area1 + area2 - overlap + eps
        iou = overlap / union

        return iou, overlap, union

    def __call__(self, pbox, gbox, iou_weight=1.):
        x1, y1, x2, y2 = paddle.split(pbox, num_or_sections=4, axis=-1)
        x1g, y1g, x2g, y2g = paddle.split(gbox, num_or_sections=4, axis=-1)
        box1 = [x1, y1, x2, y2]
        box2 = [x1g, y1g, x2g, y2g]
        iou, overlap, union = self.bbox_overlap(box1, box2, self.eps)
        xc1 = paddle.minimum(x1, x1g)
        yc1 = paddle.minimum(y1, y1g)
        xc2 = paddle.maximum(x2, x2g)
        yc2 = paddle.maximum(y2, y2g)

        area_c = (xc2 - xc1) * (yc2 - yc1) + self.eps
        miou = iou - ((area_c - union) / area_c)
        giou = 1 - miou
        if self.reduction == 'none':
            loss = giou
        elif self.reduction == 'sum':
            loss = paddle.sum(giou * iou_weight)
        else:
            loss = paddle.mean(giou * iou_weight)
        return loss * self.loss_weight