tensor_array.cc 13.6 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,


   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/framework/tensor_array.h"

#include <glog/logging.h>
#include <algorithm>
#include <limits>

23 24
#include "paddle/framework/eigen.h"

Y
Yan Chunwei 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
namespace paddle {
namespace framework {

namespace detail {

/*
 * Offer an iterator over the length-sorted lod-tensor's top level. The top
 * level of a lod-tensor stores batch-size of sequences, each top-level sequence
 * may contains several lower-level sequences, sort top-level lod by the numbers
 * of lower-level sequences in descending order, so that during RNN's running,
 * the batch-size will keep decreasing, the short sentences will end at the tail
 * of each batch.
 *
 * Let's take a simple lod-tensor for example
 *
 *   |(0)       |(1)        top-level has two instances
 *   |||        |||||    lower-level
 *
 * sort by lower-level's length
 *
 *   |(1)       |(0)
 *   |||||      |||
 *
 * when RNN runs, it get 5 batches (equals the number of elements the longest
 * sequence has)
 *
 * |||||
 * |||
 *
 * the first three batches has two elements, the last two elements just has 1
 * element each.
 */
struct DynamicBatchUnpacker {
  using value_type = float;

  DynamicBatchUnpacker(const LoDTensor& source, size_t level,
                       bool descend = true)
      : source(&source), level(level) {
    BuildLengthSortedMeta(descend);
  }

  LoDTensor GetBatch(size_t index);

  std::vector<DySeqMeta> meta;

  LoDTensor const* source;
  size_t level;

 protected:
  void BuildLengthSortedMeta(bool descend);
};

LoDTensor PackDynamicBatch(const std::vector<LoDTensor>& source,
                           const std::vector<DySeqMeta>& meta, const LoD& lod,
                           size_t level);

81 82 83 84 85 86 87 88 89 90 91
std::vector<size_t> GenDyBatchIndice(const DySeqMetaBatch& meta, int batch_id) {
  // collect indice need to copy to the batch
  std::vector<size_t> indice;
  for (const auto& seq : meta) {
    size_t id = seq.begin + batch_id;
    if (id >= seq.end) break;
    indice.push_back(id);
  }
  return indice;
}

Y
Yan Chunwei 已提交
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
}  // namespace detail

const LoDTensor& TensorArray::Read(size_t index) const {
  PADDLE_ENFORCE_LE(index, MAX_SIZE, "index[%d] too large", index);
  if (index >= size()) {
    values_.resize(index + 1);
  }
  return values_[index];
}

void TensorArray::Write(size_t index, const LoDTensor& value) {
  PADDLE_ENFORCE_LE(index, MAX_SIZE, "index[%d] too large", index);

  if (index >= size()) {
    values_.resize(index + 1);
  }

109
  values_[index].set_lod(value.lod());
Y
Yan Chunwei 已提交
110
  values_[index].Resize(value.dims());
111 112
  values_[index].mutable_data<value_type>(value.place());
  values_[index].CopyFrom(value, value.place(), platform::CPUDeviceContext());
Y
Yan Chunwei 已提交
113 114 115 116 117 118 119 120
}

void TensorArray::WriteShared(size_t index, const LoDTensor& value) {
  PADDLE_ENFORCE_LE(index, MAX_SIZE, "index[%d] too large", index);
  if (index >= size()) {
    values_.resize(index + 1);
  }

121
  values_[index].set_lod(value.lod());
122
  values_[index].ShareDataWith(value);
Y
Yan Chunwei 已提交
123 124 125 126 127 128 129
}

LoDTensor TensorArray::Pack(size_t level, const std::vector<DySeqMeta>& meta,
                            const LoD& lod) const {
  return detail::PackDynamicBatch(values_, meta, lod, level);
}

130 131
DySeqMetaBatch TensorArray::Unpack(const LoDTensor& source, int level,
                                   bool length_desend) {
Y
Yan Chunwei 已提交
132 133 134 135 136 137 138 139 140 141 142 143 144 145
  detail::DynamicBatchUnpacker unpacker(source, level,
                                        length_desend /*descend*/);

  // find max length of all the sequences
  size_t max_length = 0;
  for (const auto& seq : unpacker.meta) {
    max_length = std::max(max_length, seq.end - seq.begin);
  }

  // write batches to values
  for (size_t batch_id = 0; batch_id < max_length; batch_id++) {
    Write(batch_id, unpacker.GetBatch(batch_id));
  }

146
  PADDLE_ENFORCE(!unpacker.meta.empty());
Y
Yan Chunwei 已提交
147 148 149
  return unpacker.meta;
}

150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
LoDTensor TensorArray::LodPack(size_t level) const {
  PADDLE_ENFORCE_GT(size(), 0UL, "no time step exists");
  // the levels should be no less than 2
  LoDTensor merged;
  const LoDTensor *pre, *cur;
  pre = &Read(0);

  for (size_t step = 1; step < size(); step++) {
    cur = &Read(step);
    PADDLE_ENFORCE_GT(cur->NumLevels(), 0);
    PADDLE_ENFORCE_GT(pre->NumLevels(), 0);
    PADDLE_ENFORCE_EQ(pre->NumLevels(), cur->NumLevels());
    PADDLE_ENFORCE_EQ(pre->NumElements(level), cur->NumElements(level));

    merged = LodPackTwo(*pre, *cur, level);
    pre = &merged;
  }
  return merged;
}

/*
 * NOTE currently, only the lowest level supports packing.
 * The lowest LoD will be changed, while the relative offsets in levels above
 * stay unchanged.
 *
 * previous step : [0] [1] [3]
 * current step: [0 1 2] [2 3] []
 * packed to
 *   [0 0] [0 1] [0 2] [1 2] [1 3] [3]
 */
LoDTensor TensorArray::LodPackTwo(const LoDTensor& pre, const LoDTensor& cur,
                                  size_t level) const {
  PADDLE_ENFORCE_EQ(pre.NumLevels(), cur.NumLevels());
  PADDLE_ENFORCE_EQ(pre.NumLevels(), level + 1,
                    "Only the lowest LoD level supports pack temporarily.");
  // calculate the result tensor's shape first
  size_t num_instances = 0;
  for (size_t elem = 0; elem < pre.NumElements(level); elem++) {
    size_t prefix_size = pre.NumElements(level, elem);
    size_t num_candidates = cur.NumElements(level, elem);
    if (num_candidates > 0) {
      num_instances += num_candidates * (prefix_size + 1);
    } else {
      num_instances += prefix_size;
    }
  }

  auto res_dims = pre.dims();
  res_dims[0] = num_instances;
  LoDTensor result;
  result.Resize(res_dims);
  result.mutable_data<value_type>(cur.place());

  Vector<size_t> last_lod_level;
  // copy data
  size_t index = 0;
  last_lod_level.push_back(index);
  for (size_t elem = 0; elem < pre.NumElements(level); elem++) {
    size_t prefix_size = pre.NumElements(level, elem);
    size_t num_candidates = cur.NumElements(level, elem);

    // slice the prefix Tensor
    LoDTensor prefix = pre;
    prefix.ShrinkInLevel(level, elem, elem + 1);
    LoDTensor candidate = cur;
    if (num_candidates > 0) {
      candidate.ShrinkInLevel(level, elem, elem + 1);
    } else {  // just push prefix
      result.Slice(index, index + prefix_size)
          .CopyFrom(prefix, result.place(), platform::CPUDeviceContext());
      index += prefix_size;
      last_lod_level.push_back(index);
    }
    for (size_t candi = 0; candi < num_candidates; candi++) {
      // TODO(superjom) support GPU
      result.Slice(index, index + prefix_size)
          .CopyFrom(prefix, result.place(), platform::CPUDeviceContext());
      index += prefix_size;
      // copy candidate record
      result.Slice(index, index + 1)
          .CopyFrom(candidate.Slice(candi, candi + 1), result.place(),
                    platform::CPUDeviceContext());
      index++;
      last_lod_level.push_back(index);
    }
  }

  // update lod
  auto lod = cur.lod();
  lod.back() = last_lod_level;
  result.set_lod(lod);
  return result;
}

/*
 * source [0 1 2] [3 4] [5 6 7] will be transformd to a list of LoDTensors such
 * as
 * [0 3 5] [1 4 6] [2 7] with 1-level LoDs:
 * - [0 1 2 3]
 * - [0 1 2 3]
 * - [0 1 1 2], the [1,1) here means the second sequence is empty
 *
 * NOTE Unpack a LoDTensor in this approach may result in a big LoD.
 */
void TensorArray::LodUnpack(const LoDTensor& source, size_t level) {
  PADDLE_ENFORCE_EQ(level, source.NumLevels() - 1,
                    "only the lowest LoD level supports unpack.");
  int non_empty_instances = -1;
  size_t index = 0;
  Vector<size_t> lowest_lod_level;
  lowest_lod_level.push_back(index);

  for (size_t step = 0; non_empty_instances > 0 || non_empty_instances == -1;
       step++) {
    size_t num_instances = 0;
    for (size_t id = 0; id < source.NumElements(level); id++) {
      auto instance = source;
      instance.ShrinkInLevel(level, id, id + 1);
      if (static_cast<size_t>(instance.dims()[0]) > step) {
        num_instances++;
        index++;
      }
      lowest_lod_level.push_back(index);
    }

    // create tensor for this time step
    LoDTensor tensor;
    auto dims = source.dims();
    dims[0] = num_instances;
    // set lod
    auto lod = source.lod();
    lod.back() = lowest_lod_level;
    tensor.set_lod(lod);

    index = 0;
    for (size_t id = 0; id < source.NumElements(level); id++) {
      auto instance = source;
      instance.ShrinkInLevel(level, id, id + 1);
      if (static_cast<size_t>(instance.dims()[0]) > step) {
        // copy this instance
        tensor.Slice(index, index + 1)
            .CopyFrom(instance.Slice(step, step + 1), tensor.place(),
                      platform::CPUDeviceContext());
        index++;
      }
    }
    Write(step, tensor);
  }
}

Y
Yan Chunwei 已提交
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
LoDTensor TensorArray::Stack() const {
  LoDTensor result;
  if (size() == 0) return result;

  const auto& first_dims = values_.front().dims();
  // check all the values have the same shape
  // TODO(superjom) check the same dtypes
  for (size_t idx = 1; idx < size(); idx++) {
    const auto& value_dims = values_[idx].dims();
    PADDLE_ENFORCE_EQ(first_dims, value_dims);
  }

  // copy
  auto result_dims = vectorize(first_dims);
  result_dims.insert(result_dims.begin(), size());
  result.Resize(make_ddim(result_dims));
  result.mutable_data<value_type>(platform::CPUPlace());

  for (size_t idx = 0; idx < size(); idx++) {
319 320 321
    result.Slice(idx, idx + 1)
        .CopyFrom(Read(idx), platform::CPUPlace(),
                  platform::CPUDeviceContext());
Y
Yan Chunwei 已提交
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
  }
  return result;
}

void TensorArray::Unstack(const LoDTensor& source) const {
  Unstack(source, false /*data_shared*/);
}

void TensorArray::UnstackShared(const LoDTensor& source) const {
  Unstack(source, true /*data_shared*/);
}

void TensorArray::Unstack(const LoDTensor& source, bool data_shared) const {
  size_t first_dim = source.dims()[0];
  DDim value_dims = slice_ddim(source.dims(), 1, source.dims().size());
  PADDLE_ENFORCE_GT(first_dim, 0,
                    "source should have some data to be unstacked");

  values_.resize(first_dim);

  for (size_t elem = 0; elem < first_dim; elem++) {
    // create a new value
    auto& value = values_[elem];
    if (data_shared) {
      // share memory
347
      value.ShareDataWith(source.Slice(elem, elem + 1));
Y
Yan Chunwei 已提交
348 349 350
    } else {
      // copy
      value.Resize(value_dims);
351 352
      value.CopyFrom(source.Slice(elem, elem + 1), platform::CPUPlace(),
                     platform::CPUDeviceContext());
Y
Yan Chunwei 已提交
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
    }
  }
}

size_t TensorArray::size() const { return values_.size(); }

namespace detail {

void DynamicBatchUnpacker::BuildLengthSortedMeta(bool descend) {
  PADDLE_ENFORCE(meta.empty(), "duplicate build meta");
  // collect meta for each sequence in some level
  auto lod = SliceLevels(source->lod(), level, level + 1)[0];

  for (size_t seq_id = 0; seq_id < lod.size() - 1; seq_id++) {
    DySeqMeta seq_meta({lod[seq_id], lod[seq_id + 1], seq_id});
    meta.push_back(seq_meta);
  }

  PADDLE_ENFORCE_GT(meta.size(), 0, "meta is empty");

  // sort by length
  sort(meta.begin(), meta.end(),
       [descend](const DySeqMeta& a, const DySeqMeta& b) {
         bool a_ge_b = (a.end - a.begin) > (b.end - b.begin);
         return descend ? a_ge_b : !a_ge_b;
       });
}

LoDTensor DynamicBatchUnpacker::GetBatch(size_t index) {
  PADDLE_ENFORCE(!meta.empty(), "should build meta first");
  LoDTensor result;

385
  auto indice = detail::GenDyBatchIndice(meta, index);
Y
Yan Chunwei 已提交
386 387 388 389 390 391 392 393 394
  PADDLE_ENFORCE(!indice.empty(), "invalid batch at %d", index);

  // copy the indice of records in LoDTensor
  auto record_dims = slice_ddim(source->dims(), 1, source->dims().size());
  auto record_dims_vec = vectorize(record_dims);
  record_dims_vec.insert(record_dims_vec.begin(), indice.size());
  result.Resize(make_ddim(record_dims_vec));
  result.mutable_data<value_type>(platform::CPUPlace());

Y
Yan Chunwei 已提交
395
  for (size_t i = 0; i < indice.size(); i++) {
Y
Yan Chunwei 已提交
396
    auto index = indice[i];
397 398
    auto target = result.Slice(i, i + 1);
    auto slice = source->Slice(index, index + 1);
Y
Yan Chunwei 已提交
399

400
    target.CopyFrom(slice, platform::CPUPlace(), platform::CPUDeviceContext());
Y
Yan Chunwei 已提交
401 402 403 404 405
  }

  return result;
}

Y
Yan Chunwei 已提交
406
// TODO(supejom) to cache lod if reasonable
Y
Yan Chunwei 已提交
407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
LoDTensor PackDynamicBatch(const std::vector<LoDTensor>& source,
                           const std::vector<DySeqMeta>& meta, const LoD& lod,
                           size_t level) {
  PADDLE_ENFORCE(!source.empty());
  PADDLE_ENFORCE(!meta.empty());
  PADDLE_ENFORCE(!lod.empty());

  LoDTensor result;

  // init result space
  auto record_dims = slice_ddim(source[0].dims(), 1, source[0].dims().size());
  auto record_dims_vec = vectorize(record_dims);
  auto height = lod[level].back();
  record_dims_vec.insert(record_dims_vec.begin(), height);
  result.Resize(make_ddim(record_dims_vec));
  result.mutable_data<float>(platform::CPUPlace());

  for (size_t batch_id = 0; batch_id < source.size(); batch_id++) {
    for (size_t seq_id = 0; seq_id < meta.size(); seq_id++) {
      const auto& seq_meta = meta[seq_id];
      // source is source[batch_id][seq_id]
      // target is result[index]
      auto index = seq_meta.begin + batch_id;
      if (index >= seq_meta.end) break;
431 432 433 434
      auto source_ = source[batch_id].Slice(seq_id, seq_id + 1);
      auto target = result.Slice(index, index + 1);
      target.CopyFrom(source_, platform::CPUPlace(),
                      platform::CPUDeviceContext());
Y
Yan Chunwei 已提交
435 436 437 438 439 440 441 442 443 444 445
    }
  }

  result.set_lod(lod);
  return result;
}

}  // namespace detail

}  // namespace framework
}  // namespace paddle