提交 c705f065 编写于 作者: Y Yan Chunwei 提交者: GitHub

add TensorArray (#4459)

* add tensor array

* update

* set type
上级 33c54533
......@@ -43,3 +43,6 @@ add_custom_command(TARGET framework_py_proto POST_BUILD
cc_library(backward SRCS backward.cc DEPS net_op)
cc_test(backward_test SRCS backward_test.cc DEPS backward recurrent_op device_context)
cc_library(tensor_array SRCS tensor_array.cc DEPS lod_tensor)
cc_test(tensor_array_test SRCS tensor_array_test.cc DEPS tensor_array place)
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/framework/tensor_array.h"
#include <glog/logging.h>
#include <algorithm>
#include <limits>
namespace paddle {
namespace framework {
namespace detail {
/*
* Offer an iterator over the length-sorted lod-tensor's top level. The top
* level of a lod-tensor stores batch-size of sequences, each top-level sequence
* may contains several lower-level sequences, sort top-level lod by the numbers
* of lower-level sequences in descending order, so that during RNN's running,
* the batch-size will keep decreasing, the short sentences will end at the tail
* of each batch.
*
* Let's take a simple lod-tensor for example
*
* |(0) |(1) top-level has two instances
* ||| ||||| lower-level
*
* sort by lower-level's length
*
* |(1) |(0)
* ||||| |||
*
* when RNN runs, it get 5 batches (equals the number of elements the longest
* sequence has)
*
* |||||
* |||
*
* the first three batches has two elements, the last two elements just has 1
* element each.
*/
struct DynamicBatchUnpacker {
using value_type = float;
DynamicBatchUnpacker(const LoDTensor& source, size_t level,
bool descend = true)
: source(&source), level(level) {
BuildLengthSortedMeta(descend);
}
LoDTensor GetBatch(size_t index);
std::vector<DySeqMeta> meta;
LoDTensor const* source;
size_t level;
protected:
void BuildLengthSortedMeta(bool descend);
};
LoDTensor PackDynamicBatch(const std::vector<LoDTensor>& source,
const std::vector<DySeqMeta>& meta, const LoD& lod,
size_t level);
} // namespace detail
const LoDTensor& TensorArray::Read(size_t index) const {
PADDLE_ENFORCE_LE(index, MAX_SIZE, "index[%d] too large", index);
if (index >= size()) {
values_.resize(index + 1);
}
return values_[index];
}
void TensorArray::Write(size_t index, const LoDTensor& value) {
PADDLE_ENFORCE_LE(index, MAX_SIZE, "index[%d] too large", index);
if (index >= size()) {
values_.resize(index + 1);
}
values_[index].Resize(value.dims());
values_[index].mutable_data<value_type>(platform::CPUPlace());
values_[index].CopyFrom<value_type>(value, platform::CPUPlace());
}
void TensorArray::WriteShared(size_t index, const LoDTensor& value) {
PADDLE_ENFORCE_LE(index, MAX_SIZE, "index[%d] too large", index);
if (index >= size()) {
values_.resize(index + 1);
}
values_[index].ShareDataWith<value_type>(value);
}
LoDTensor TensorArray::Pack(size_t level, const std::vector<DySeqMeta>& meta,
const LoD& lod) const {
return detail::PackDynamicBatch(values_, meta, lod, level);
}
std::vector<DySeqMeta> TensorArray::Unpack(const LoDTensor& source, int level,
bool length_desend) {
detail::DynamicBatchUnpacker unpacker(source, level,
length_desend /*descend*/);
// find max length of all the sequences
size_t max_length = 0;
for (const auto& seq : unpacker.meta) {
max_length = std::max(max_length, seq.end - seq.begin);
}
// write batches to values
for (size_t batch_id = 0; batch_id < max_length; batch_id++) {
Write(batch_id, unpacker.GetBatch(batch_id));
}
return unpacker.meta;
}
LoDTensor TensorArray::Stack() const {
LoDTensor result;
if (size() == 0) return result;
const auto& first_dims = values_.front().dims();
// check all the values have the same shape
// TODO(superjom) check the same dtypes
for (size_t idx = 1; idx < size(); idx++) {
const auto& value_dims = values_[idx].dims();
PADDLE_ENFORCE_EQ(first_dims, value_dims);
}
// copy
auto result_dims = vectorize(first_dims);
result_dims.insert(result_dims.begin(), size());
result.Resize(make_ddim(result_dims));
result.mutable_data<value_type>(platform::CPUPlace());
for (size_t idx = 0; idx < size(); idx++) {
result.Slice<value_type>(idx, idx + 1)
.CopyFrom<value_type>(Read(idx), platform::CPUPlace());
}
return result;
}
void TensorArray::Unstack(const LoDTensor& source) const {
Unstack(source, false /*data_shared*/);
}
void TensorArray::UnstackShared(const LoDTensor& source) const {
Unstack(source, true /*data_shared*/);
}
void TensorArray::Unstack(const LoDTensor& source, bool data_shared) const {
size_t first_dim = source.dims()[0];
DDim value_dims = slice_ddim(source.dims(), 1, source.dims().size());
PADDLE_ENFORCE_GT(first_dim, 0,
"source should have some data to be unstacked");
values_.resize(first_dim);
for (size_t elem = 0; elem < first_dim; elem++) {
// create a new value
auto& value = values_[elem];
if (data_shared) {
// share memory
value.ShareDataWith<value_type>(source.Slice<value_type>(elem, elem + 1));
} else {
// copy
value.Resize(value_dims);
value.CopyFrom<value_type>(source.Slice<value_type>(elem, elem + 1),
platform::CPUPlace());
}
}
}
size_t TensorArray::size() const { return values_.size(); }
namespace detail {
void DynamicBatchUnpacker::BuildLengthSortedMeta(bool descend) {
PADDLE_ENFORCE(meta.empty(), "duplicate build meta");
// collect meta for each sequence in some level
auto lod = SliceLevels(source->lod(), level, level + 1)[0];
for (size_t seq_id = 0; seq_id < lod.size() - 1; seq_id++) {
DySeqMeta seq_meta({lod[seq_id], lod[seq_id + 1], seq_id});
meta.push_back(seq_meta);
}
PADDLE_ENFORCE_GT(meta.size(), 0, "meta is empty");
// sort by length
sort(meta.begin(), meta.end(),
[descend](const DySeqMeta& a, const DySeqMeta& b) {
bool a_ge_b = (a.end - a.begin) > (b.end - b.begin);
return descend ? a_ge_b : !a_ge_b;
});
}
LoDTensor DynamicBatchUnpacker::GetBatch(size_t index) {
PADDLE_ENFORCE(!meta.empty(), "should build meta first");
LoDTensor result;
// collect indice need to copy to the batch
std::vector<size_t> indice;
for (size_t seq_id = 0; seq_id < meta.size(); seq_id++) {
const auto& seq_meta = meta[seq_id];
if (index >= seq_meta.end) break;
indice.push_back(seq_meta.begin + index);
}
PADDLE_ENFORCE(!indice.empty(), "invalid batch at %d", index);
// copy the indice of records in LoDTensor
auto record_dims = slice_ddim(source->dims(), 1, source->dims().size());
auto record_dims_vec = vectorize(record_dims);
record_dims_vec.insert(record_dims_vec.begin(), indice.size());
result.Resize(make_ddim(record_dims_vec));
result.mutable_data<value_type>(platform::CPUPlace());
for (size_t i = 0; i < indice.size() - 1; i++) {
auto index = indice[i];
auto target = result.Slice<value_type>(i, i + 1);
auto source_ = source->Slice<value_type>(index, index + 1);
target.CopyFrom<value_type>(source_, platform::CPUPlace());
}
return result;
}
LoDTensor PackDynamicBatch(const std::vector<LoDTensor>& source,
const std::vector<DySeqMeta>& meta, const LoD& lod,
size_t level) {
PADDLE_ENFORCE(!source.empty());
PADDLE_ENFORCE(!meta.empty());
PADDLE_ENFORCE(!lod.empty());
LoDTensor result;
// init result space
auto record_dims = slice_ddim(source[0].dims(), 1, source[0].dims().size());
auto record_dims_vec = vectorize(record_dims);
auto height = lod[level].back();
record_dims_vec.insert(record_dims_vec.begin(), height);
result.Resize(make_ddim(record_dims_vec));
result.mutable_data<float>(platform::CPUPlace());
for (size_t batch_id = 0; batch_id < source.size(); batch_id++) {
for (size_t seq_id = 0; seq_id < meta.size(); seq_id++) {
const auto& seq_meta = meta[seq_id];
// source is source[batch_id][seq_id]
// target is result[index]
auto index = seq_meta.begin + batch_id;
if (index >= seq_meta.end) break;
auto source_ = source[batch_id].Slice<float>(seq_id, seq_id + 1);
auto target = result.Slice<float>(index, index + 1);
target.CopyFrom<float>(source_, platform::CPUPlace());
}
}
result.set_lod(lod);
return result;
}
} // namespace detail
} // namespace framework
} // namespace paddle
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <vector>
#include "paddle/framework/lod_tensor.h"
namespace paddle {
namespace framework {
/*
* DyBatchSeqPosition stores indices of the basic element in tensor. It is used
* after lod-tensor's re-assembling, its info can be used to recover the order
* in original lod-tensor.
*/
struct DySeqMeta {
size_t begin;
size_t end; // not included
size_t ori_idx;
};
/*
* TensorArray is a C-array-like array of tensors, it is meant to be used with
* dynamic iteration primitives such as while_loop. It is used to segment inputs
* and store states in all time steps.
*
* By providing some methods similar to a C++ array, the difinition of some
* state-based dynamic models such as RNN cound be more natural and highly
* flexible.
*/
class TensorArray {
public:
using value_type = float;
// max number of values allowed to store.
const size_t MAX_SIZE{100000};
/*
* Inputs:
* - value_shared: share memory between tensors.
*/
explicit TensorArray(bool values_shared = true)
: values_shared_(values_shared) {}
/*
* Read the value at location `index` in the `TensorArray`.
*/
const LoDTensor &Read(size_t index) const;
/*
* Write value into the index of the TensorArray.
*/
void Write(size_t index, const LoDTensor &value);
/*
* Write value into the index of the TensorArray, with memory shared.
*/
void WriteShared(size_t index, const LoDTensor &value);
/*
* Recover the original LoD-arranged LoDTensor with the `values`, `level` and
* `indice_map`.
*/
LoDTensor Pack(size_t level, const std::vector<DySeqMeta> &meta,
const LoD &lod) const;
/*
* Split LoDTensor in some `level` and write the generated batches to
* `values`, if set `desend`, will sort by length in descending order else in
* ascending order.
*/
std::vector<DySeqMeta> Unpack(const LoDTensor &source, int level,
bool length_desend);
/*
* Pack the values into a tensor with rank one higher than each tensor in
* values.
*/
LoDTensor Stack() const;
/*
* Unpacks the given division of a rank-`R` tensor into rank-`(R-1)` tensors.
*/
void Unstack(const LoDTensor &source) const;
/*
* Unpacks the given division of a rank-`R` tensor into rank-`(R-1)` tensors,
* with memory of tensors shared.
*/
void UnstackShared(const LoDTensor &source) const;
/*
* Return the number of values.
*/
size_t size() const;
protected:
void Unstack(const LoDTensor &source, bool data_shared) const;
private:
mutable std::vector<LoDTensor> values_;
bool values_shared_;
}; // class TensorArray
} // namespace framework
} // namespace paddle
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/framework/tensor_array.h"
#include <gtest/gtest.h>
namespace paddle {
namespace framework {
class TensorArrayTester : public ::testing::Test {
protected:
void SetUp() override {
LoDTensor source;
source.Resize(make_ddim({batch_size, dim}));
int* data = source.mutable_data<int>(platform::CPUPlace());
for (int i = 0; i < 16 * 32; i++) {
data[i] = i;
}
ta.Unstack(source);
}
TensorArray ta;
const int batch_size = 16;
const int dim = 32;
};
TEST_F(TensorArrayTester, Read) {
for (int i = 0; i < batch_size; i++) {
const auto& tensor = ta.Read(i);
ASSERT_EQ(tensor.dims()[0], 1);
ASSERT_EQ(tensor.dims()[1], dim);
}
}
TEST_F(TensorArrayTester, Write) {
LoDTensor source;
source.Resize(make_ddim({1, dim}));
for (int i = 0; i < dim; i++) {
*(source.mutable_data<int>(platform::CPUPlace()) + i) = i;
}
ta.Write(2, source);
const auto& tensor = ta.Read(2);
for (int i = 0; i < dim; i++) {
EXPECT_EQ(*(tensor.data<int>() + i), *(source.data<int>() + i));
}
}
TEST_F(TensorArrayTester, WriteShared) {
LoDTensor source;
source.Resize(make_ddim({1, dim}));
for (int i = 0; i < dim; i++) {
*(source.mutable_data<int>(platform::CPUPlace()) + i) = i;
}
ta.WriteShared(2, source);
const auto& tensor = ta.Read(2);
for (int i = 0; i < dim; i++) {
EXPECT_EQ(*(tensor.data<int>() + i), *(source.data<int>() + i));
}
EXPECT_EQ(source.data<int>(), tensor.data<int>());
}
class TensorArrayPackTester : public ::testing::Test {
protected:
virtual void SetUp() override {
lod.push_back(std::vector<size_t>{0, 2, 9, 13});
source.set_lod(lod);
source.Resize(make_ddim({13, 128}));
source.mutable_data<int>(platform::CPUPlace());
// content of each setence: 0 1 2 3 4
const auto& level = lod.front();
for (size_t i = 0; i < level.size() - 1; i++) {
size_t begin = level[i];
size_t end = level[i + 1];
for (size_t j = begin; j < end; j++) {
auto record = source.Slice<int>(j, j + 1);
for (int dim = 0; dim < 128; dim++) {
record.mutable_data<int>(platform::CPUPlace())[dim] = j - begin;
}
}
}
// unpack
meta = ta.Unpack(source, 0, true);
}
LoD lod;
TensorArray ta;
LoDTensor source;
std::vector<DySeqMeta> meta;
};
TEST_F(TensorArrayPackTester, Unpack) {
ASSERT_EQ(ta.size(), 7UL);
const auto& t0 = ta.Read(0);
const auto& t1 = ta.Read(1);
ASSERT_EQ(t0.data<int>()[0], int(0));
ASSERT_EQ(t1.data<int>()[0], int(1));
}
TEST_F(TensorArrayPackTester, Pack) {
LoDTensor packed = ta.Pack(0, meta, lod);
}
TEST_F(TensorArrayTester, size) {
ASSERT_EQ(ta.size(), static_cast<size_t>(batch_size));
}
} // namespace framework
} // namespace paddle
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册