train.py 6.2 KB
Newer Older
F
FDInSky 已提交
1 2 3
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
4 5 6 7 8 9
import os, sys
# add python path of PadleDetection to sys.path
parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 2)))
if parent_path not in sys.path:
    sys.path.append(parent_path)

F
FDInSky 已提交
10 11 12 13 14
import time
# ignore numba warning
import warnings
warnings.filterwarnings('ignore')
import random
15
import datetime
F
FDInSky 已提交
16
import numpy as np
17
from collections import deque
W
wangxinxin08 已提交
18 19
import paddle
from paddle import fluid
F
FDInSky 已提交
20 21
from ppdet.core.workspace import load_config, merge_config, create
from ppdet.data.reader import create_reader
22
from ppdet.utils.stats import TrainingStats
F
FDInSky 已提交
23 24 25
from ppdet.utils.check import check_gpu, check_version, check_config
from ppdet.utils.cli import ArgsParser
from ppdet.utils.checkpoint import load_dygraph_ckpt, save_dygraph_ckpt
W
wangxinxin08 已提交
26
from paddle.distributed import ParallelEnv
27 28 29 30
import logging
FORMAT = '%(asctime)s-%(levelname)s: %(message)s'
logging.basicConfig(level=logging.INFO, format=FORMAT)
logger = logging.getLogger(__name__)
F
FDInSky 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98


def parse_args():
    parser = ArgsParser()
    parser.add_argument(
        "-ckpt_type",
        default='pretrain',
        type=str,
        help="Loading Checkpoints only support 'pretrain', 'finetune', 'resume'."
    )
    parser.add_argument(
        "--fp16",
        action='store_true',
        default=False,
        help="Enable mixed precision training.")
    parser.add_argument(
        "--loss_scale",
        default=8.,
        type=float,
        help="Mixed precision training loss scale.")
    parser.add_argument(
        "--eval",
        action='store_true',
        default=False,
        help="Whether to perform evaluation in train")
    parser.add_argument(
        "--output_eval",
        default=None,
        type=str,
        help="Evaluation directory, default is current directory.")
    parser.add_argument(
        "--use_tb",
        type=bool,
        default=False,
        help="whether to record the data to Tensorboard.")
    parser.add_argument(
        '--tb_log_dir',
        type=str,
        default="tb_log_dir/scalar",
        help='Tensorboard logging directory for scalar.')
    parser.add_argument(
        "--enable_ce",
        type=bool,
        default=False,
        help="If set True, enable continuous evaluation job."
        "This flag is only used for internal test.")
    parser.add_argument(
        "--use_gpu", action='store_true', default=False, help="data parallel")

    parser.add_argument(
        '--is_profiler',
        type=int,
        default=0,
        help='The switch of profiler tools. (used for benchmark)')

    args = parser.parse_args()
    return args


def run(FLAGS, cfg):
    env = os.environ
    FLAGS.dist = 'PADDLE_TRAINER_ID' in env and 'PADDLE_TRAINERS_NUM' in env
    if FLAGS.dist:
        trainer_id = int(env['PADDLE_TRAINER_ID'])
        local_seed = (99 + trainer_id)
        random.seed(local_seed)
        np.random.seed(local_seed)

99
    if FLAGS.enable_ce:
F
FDInSky 已提交
100 101 102 103 104
        random.seed(0)
        np.random.seed(0)

    # Model
    main_arch = cfg.architecture
105
    model = create(cfg.architecture)
F
FDInSky 已提交
106 107 108 109 110 111 112 113 114 115

    # Optimizer
    lr = create('LearningRate')()
    optimizer = create('OptimizerBuilder')(lr, model.parameters())

    # Init Model & Optimzer   
    model = load_dygraph_ckpt(
        model,
        optimizer,
        cfg.pretrain_weights,
116
        ckpt_type=FLAGS.ckpt_type,
W
wangguanzhong 已提交
117
        load_static_weights=cfg.get('load_static_weights', False))
F
FDInSky 已提交
118

W
wangguanzhong 已提交
119
    # Parallel Model 
120
    if ParallelEnv().nranks > 1:
W
wangxinxin08 已提交
121 122
        strategy = paddle.distributed.init_parallel_env()
        model = paddle.DataParallel(model, strategy)
W
wangguanzhong 已提交
123

F
FDInSky 已提交
124 125 126
    # Data Reader 
    start_iter = 0
    if cfg.use_gpu:
W
wangguanzhong 已提交
127
        devices_num = fluid.core.get_cuda_device_count()
F
FDInSky 已提交
128 129 130 131
    else:
        devices_num = int(os.environ.get('CPU_NUM', 1))

    train_reader = create_reader(
132
        cfg.TrainReader, (cfg.max_iters - start_iter), cfg, devices_num=1)
F
FDInSky 已提交
133

134
    time_stat = deque(maxlen=cfg.log_iter)
135 136
    start_time = time.time()
    end_time = time.time()
F
FDInSky 已提交
137 138
    # Run Train 
    for iter_id, data in enumerate(train_reader()):
139 140 141 142 143 144 145

        start_time = end_time
        end_time = time.time()
        time_stat.append(end_time - start_time)
        time_cost = np.mean(time_stat)
        eta_sec = (cfg.max_iters - iter_id) * time_cost
        eta = str(datetime.timedelta(seconds=int(eta_sec)))
F
FDInSky 已提交
146 147 148

        # Model Forward
        model.train()
149 150
        outputs = model(data, cfg['TrainReader']['inputs_def']['fields'],
                        'train')
F
FDInSky 已提交
151 152 153

        # Model Backward
        loss = outputs['loss']
154
        if ParallelEnv().nranks > 1:
F
FDInSky 已提交
155 156 157 158 159 160
            loss = model.scale_loss(loss)
            loss.backward()
            model.apply_collective_grads()
        else:
            loss.backward()
        optimizer.minimize(loss)
W
wangxinxin08 已提交
161 162 163 164
        optimizer.step()
        curr_lr = optimizer.get_lr()
        lr.step()
        optimizer.clear_grad()
165 166 167 168

        if ParallelEnv().nranks < 2 or ParallelEnv().local_rank == 0:
            # Log state 
            if iter_id == 0:
169
                train_stats = TrainingStats(cfg.log_iter, outputs.keys())
170 171 172
            train_stats.update(outputs)
            logs = train_stats.log()
            if iter_id % cfg.log_iter == 0:
173 174 175
                ips = float(cfg['TrainReader']['batch_size']) / time_cost
                strs = 'iter: {}, lr: {:.6f}, {}, eta: {}, batch_cost: {:.5f} sec, ips: {:.5f} images/sec'.format(
                    iter_id, curr_lr, logs, eta, time_cost, ips)
176 177 178 179 180 181 182
                logger.info(strs)
            # Save Stage 
            if iter_id > 0 and iter_id % int(
                    cfg.snapshot_iter) == 0 or iter_id == cfg.max_iters - 1:
                cfg_name = os.path.basename(FLAGS.config).split('.')[0]
                save_name = str(
                    iter_id) if iter_id != cfg.max_iters - 1 else "model_final"
W
wangguanzhong 已提交
183 184
                save_dir = os.path.join(cfg.save_dir, cfg_name)
                save_dygraph_ckpt(model, optimizer, save_dir, save_name)
F
FDInSky 已提交
185 186 187 188 189 190 191 192 193 194 195


def main():
    FLAGS = parse_args()

    cfg = load_config(FLAGS.config)
    merge_config(FLAGS.opt)
    check_config(cfg)
    check_gpu(cfg.use_gpu)
    check_version()

W
wangxinxin08 已提交
196 197 198
    place = paddle.CUDAPlace(ParallelEnv().dev_id) \
                    if cfg.use_gpu else paddle.CPUPlace()
    paddle.disable_static(place)
F
FDInSky 已提交
199

W
wangxinxin08 已提交
200
    run(FLAGS, cfg)
F
FDInSky 已提交
201 202 203 204


if __name__ == "__main__":
    main()