utils.py 5.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import cv2
import time
import paddle
import numpy as np

__all__ = [
    'Timer',
    'Detection',
    'load_det_results',
    'preprocess_reid',
    'get_crops',
    'clip_box',
    'scale_coords',
]


class Timer(object):
    """
    This class used to compute and print the current FPS while evaling.
    """

    def __init__(self):
        self.total_time = 0.
        self.calls = 0
        self.start_time = 0.
        self.diff = 0.
        self.average_time = 0.
        self.duration = 0.

    def tic(self):
        # using time.time instead of time.clock because time time.clock
        # does not normalize for multithreading
        self.start_time = time.time()

    def toc(self, average=True):
        self.diff = time.time() - self.start_time
        self.total_time += self.diff
        self.calls += 1
        self.average_time = self.total_time / self.calls
        if average:
            self.duration = self.average_time
        else:
            self.duration = self.diff
        return self.duration

    def clear(self):
        self.total_time = 0.
        self.calls = 0
        self.start_time = 0.
        self.diff = 0.
        self.average_time = 0.
        self.duration = 0.


class Detection(object):
    """
    This class represents a bounding box detection in a single image.

    Args:
        tlwh (ndarray): Bounding box in format `(top left x, top left y,
            width, height)`.
        confidence (ndarray): Detector confidence score.
        feature (Tensor): A feature vector that describes the object 
            contained in this image.
    """

    def __init__(self, tlwh, confidence, feature):
        self.tlwh = np.asarray(tlwh, dtype=np.float32)
        self.confidence = np.asarray(confidence, dtype=np.float32)
G
George Ni 已提交
85
        self.feature = feature
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115

    def to_tlbr(self):
        """
        Convert bounding box to format `(min x, min y, max x, max y)`, i.e.,
        `(top left, bottom right)`.
        """
        ret = self.tlwh.copy()
        ret[2:] += ret[:2]
        return ret

    def to_xyah(self):
        """
        Convert bounding box to format `(center x, center y, aspect ratio,
        height)`, where the aspect ratio is `width / height`.
        """
        ret = self.tlwh.copy()
        ret[:2] += ret[2:] / 2
        ret[2] /= ret[3]
        return ret


def load_det_results(det_file, num_frames):
    assert os.path.exists(det_file) and os.path.isfile(det_file), \
        'Error: det_file: {} not exist or not a file.'.format(det_file)
    labels = np.loadtxt(det_file, dtype='float32', delimiter=',')
    results_list = []
    for frame_i in range(0, num_frames):
        results = {'bbox': [], 'score': []}
        lables_with_frame = labels[labels[:, 0] == frame_i + 1]
        for l in lables_with_frame:
116 117
            results['bbox'].append(l[1:5])
            results['score'].append(l[5])
118 119 120 121 122 123
        results_list.append(results)
    return results_list


def scale_coords(coords, input_shape, im_shape, scale_factor):
    im_shape = im_shape.numpy()[0]
124 125 126 127
    ratio = scale_factor[0][0]
    pad_w = (input_shape[1] - int(im_shape[1])) / 2
    pad_h = (input_shape[0] - int(im_shape[0])) / 2
    coords = paddle.cast(coords, 'float32')
128 129
    coords[:, 0::2] -= pad_w
    coords[:, 1::2] -= pad_h
130
    coords[:, 0:4] /= ratio
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
    coords[:, :4] = paddle.clip(coords[:, :4], min=0, max=coords[:, :4].max())
    return coords.round()


def clip_box(xyxy, input_shape, im_shape, scale_factor):
    im_shape = im_shape.numpy()[0]
    ratio = scale_factor.numpy()[0][0]
    img0_shape = [int(im_shape[0] / ratio), int(im_shape[1] / ratio)]

    xyxy[:, 0::2] = paddle.clip(xyxy[:, 0::2], min=0, max=img0_shape[1])
    xyxy[:, 1::2] = paddle.clip(xyxy[:, 1::2], min=0, max=img0_shape[0])
    return xyxy


def get_crops(xyxy, ori_img, pred_scores, w, h):
    crops = []
    keep_scores = []
    xyxy = xyxy.numpy().astype(np.int64)
    ori_img = ori_img.numpy()
    ori_img = np.squeeze(ori_img, axis=0).transpose(1, 0, 2)
    pred_scores = pred_scores.numpy()
    for i, bbox in enumerate(xyxy):
        if bbox[2] <= bbox[0] or bbox[3] <= bbox[1]:
            continue
        crop = ori_img[bbox[0]:bbox[2], bbox[1]:bbox[3], :]
        crops.append(crop)
        keep_scores.append(pred_scores[i])
    if len(crops) == 0:
        return [], []
    crops = preprocess_reid(crops, w, h)
    return crops, keep_scores


def preprocess_reid(imgs,
                    w=64,
                    h=192,
                    mean=[0.485, 0.456, 0.406],
                    std=[0.229, 0.224, 0.225]):
    im_batch = []
    for img in imgs:
        img = cv2.resize(img, (w, h))
        img = img[:, :, ::-1].astype('float32').transpose((2, 0, 1)) / 255
        img_mean = np.array(mean).reshape((3, 1, 1))
        img_std = np.array(std).reshape((3, 1, 1))
        img -= img_mean
        img /= img_std
        img = np.expand_dims(img, axis=0)
        im_batch.append(img)
    im_batch = np.concatenate(im_batch, 0)
    return im_batch