# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import cv2 import time import paddle import numpy as np __all__ = [ 'Timer', 'Detection', 'load_det_results', 'preprocess_reid', 'get_crops', 'clip_box', 'scale_coords', ] class Timer(object): """ This class used to compute and print the current FPS while evaling. """ def __init__(self): self.total_time = 0. self.calls = 0 self.start_time = 0. self.diff = 0. self.average_time = 0. self.duration = 0. def tic(self): # using time.time instead of time.clock because time time.clock # does not normalize for multithreading self.start_time = time.time() def toc(self, average=True): self.diff = time.time() - self.start_time self.total_time += self.diff self.calls += 1 self.average_time = self.total_time / self.calls if average: self.duration = self.average_time else: self.duration = self.diff return self.duration def clear(self): self.total_time = 0. self.calls = 0 self.start_time = 0. self.diff = 0. self.average_time = 0. self.duration = 0. class Detection(object): """ This class represents a bounding box detection in a single image. Args: tlwh (ndarray): Bounding box in format `(top left x, top left y, width, height)`. confidence (ndarray): Detector confidence score. feature (Tensor): A feature vector that describes the object contained in this image. """ def __init__(self, tlwh, confidence, feature): self.tlwh = np.asarray(tlwh, dtype=np.float32) self.confidence = np.asarray(confidence, dtype=np.float32) self.feature = feature def to_tlbr(self): """ Convert bounding box to format `(min x, min y, max x, max y)`, i.e., `(top left, bottom right)`. """ ret = self.tlwh.copy() ret[2:] += ret[:2] return ret def to_xyah(self): """ Convert bounding box to format `(center x, center y, aspect ratio, height)`, where the aspect ratio is `width / height`. """ ret = self.tlwh.copy() ret[:2] += ret[2:] / 2 ret[2] /= ret[3] return ret def load_det_results(det_file, num_frames): assert os.path.exists(det_file) and os.path.isfile(det_file), \ 'Error: det_file: {} not exist or not a file.'.format(det_file) labels = np.loadtxt(det_file, dtype='float32', delimiter=',') results_list = [] for frame_i in range(0, num_frames): results = {'bbox': [], 'score': []} lables_with_frame = labels[labels[:, 0] == frame_i + 1] for l in lables_with_frame: results['bbox'].append(l[1:5]) results['score'].append(l[5]) results_list.append(results) return results_list def scale_coords(coords, input_shape, im_shape, scale_factor): im_shape = im_shape.numpy()[0] ratio = scale_factor[0][0] pad_w = (input_shape[1] - int(im_shape[1])) / 2 pad_h = (input_shape[0] - int(im_shape[0])) / 2 coords = paddle.cast(coords, 'float32') coords[:, 0::2] -= pad_w coords[:, 1::2] -= pad_h coords[:, 0:4] /= ratio coords[:, :4] = paddle.clip(coords[:, :4], min=0, max=coords[:, :4].max()) return coords.round() def clip_box(xyxy, input_shape, im_shape, scale_factor): im_shape = im_shape.numpy()[0] ratio = scale_factor.numpy()[0][0] img0_shape = [int(im_shape[0] / ratio), int(im_shape[1] / ratio)] xyxy[:, 0::2] = paddle.clip(xyxy[:, 0::2], min=0, max=img0_shape[1]) xyxy[:, 1::2] = paddle.clip(xyxy[:, 1::2], min=0, max=img0_shape[0]) return xyxy def get_crops(xyxy, ori_img, pred_scores, w, h): crops = [] keep_scores = [] xyxy = xyxy.numpy().astype(np.int64) ori_img = ori_img.numpy() ori_img = np.squeeze(ori_img, axis=0).transpose(1, 0, 2) pred_scores = pred_scores.numpy() for i, bbox in enumerate(xyxy): if bbox[2] <= bbox[0] or bbox[3] <= bbox[1]: continue crop = ori_img[bbox[0]:bbox[2], bbox[1]:bbox[3], :] crops.append(crop) keep_scores.append(pred_scores[i]) if len(crops) == 0: return [], [] crops = preprocess_reid(crops, w, h) return crops, keep_scores def preprocess_reid(imgs, w=64, h=192, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]): im_batch = [] for img in imgs: img = cv2.resize(img, (w, h)) img = img[:, :, ::-1].astype('float32').transpose((2, 0, 1)) / 255 img_mean = np.array(mean).reshape((3, 1, 1)) img_std = np.array(std).reshape((3, 1, 1)) img -= img_mean img /= img_std img = np.expand_dims(img, axis=0) im_batch.append(img) im_batch = np.concatenate(im_batch, 0) return im_batch