MKLDNNLayer.h 10.7 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <vector>
#include "Layer.h"
19
#include "MKLDNNBase.h"
T
tensor-tang 已提交
20
#include "mkldnn.hpp"
T
tensor-tang 已提交
21
#include "paddle/math/MKLDNNMatrix.h"
22
#include "paddle/utils/Stat.h"
T
tensor-tang 已提交
23

T
tensor-tang 已提交
24 25
DECLARE_bool(use_mkldnn);

T
tensor-tang 已提交
26 27
namespace paddle {

28 29
class MKLDNNLayer;
typedef std::shared_ptr<MKLDNNLayer> MKLDNNLayerPtr;
T
tensor-tang 已提交
30 31

/**
32
 * @brief Base class of MKLDNNlayer.
T
tensor-tang 已提交
33 34
 *
 */
35
class MKLDNNLayer : public Layer {
T
tensor-tang 已提交
36
protected:
37 38
  // input value element count
  size_t inputElemenCnt_;
T
tensor-tang 已提交
39 40 41 42 43 44 45
  // batch size
  int bs_;
  // input image channel, height and width
  int ic_, ih_, iw_;
  // output image channel, height and width
  int oc_, oh_, ow_;

T
tensor-tang 已提交
46 47 48
  // backward also need reset after reset forward handle
  bool needResetBwd_;

T
tensor-tang 已提交
49 50
  // mkldnn engine, stream and primivtives
  mkldnn::engine engine_;
51
  std::shared_ptr<MKLDNNStream> stream_;
T
tensor-tang 已提交
52
  std::shared_ptr<mkldnn::primitive> fwd_;
T
tensor-tang 已提交
53 54
  std::shared_ptr<mkldnn::primitive> bwdWgt_;
  std::shared_ptr<mkldnn::primitive> bwdData_;
T
tensor-tang 已提交
55 56 57
  std::vector<mkldnn::primitive> pipelineFwd_;
  std::vector<mkldnn::primitive> pipelineBwd_;

58
  // MKLDNNMatrixPtr with internal format
T
tensor-tang 已提交
59
  MKLDNNMatrixPtr inVal_;
T
tensor-tang 已提交
60
  MKLDNNMatrixPtr inGrad_;
T
tensor-tang 已提交
61
  MKLDNNMatrixPtr outVal_;
T
tensor-tang 已提交
62
  MKLDNNMatrixPtr outGrad_;
T
tensor-tang 已提交
63
  MKLDNNMatrixPtr wgtVal_;
T
tensor-tang 已提交
64
  MKLDNNMatrixPtr wgtGrad_;
T
tensor-tang 已提交
65
  MKLDNNMatrixPtr biasVal_;
T
tensor-tang 已提交
66
  MKLDNNMatrixPtr biasGrad_;
T
tensor-tang 已提交
67

T
tensor-tang 已提交
68
public:
69
  explicit MKLDNNLayer(const LayerConfig& config)
T
tensor-tang 已提交
70
      : Layer(config),
71
        inputElemenCnt_(0),
T
tensor-tang 已提交
72 73 74 75 76 77 78
        bs_(0),
        ic_(0),
        ih_(0),
        iw_(0),
        oc_(0),
        oh_(0),
        ow_(0),
T
tensor-tang 已提交
79
        needResetBwd_(true),
T
tensor-tang 已提交
80
        engine_(mkldnn::engine::cpu, 0),
T
tensor-tang 已提交
81 82 83 84
        stream_(nullptr),
        fwd_(nullptr),
        bwdWgt_(nullptr),
        bwdData_(nullptr) {}
T
tensor-tang 已提交
85

86
  ~MKLDNNLayer() {}
T
tensor-tang 已提交
87

T
tensor-tang 已提交
88 89
  virtual bool init(const LayerMap& layerMap,
                    const ParameterMap& parameterMap) {
T
tensor-tang 已提交
90 91 92
    CHECK(FLAGS_use_mkldnn) << "MkldnnLayers only support use_mkldnn."
                            << "Please set WITH_MKLDNN=ON "
                            << "and set use_mkldnn=True";
T
refine  
tensor-tang 已提交
93
    CHECK(!useGpu_) << "Do not support GPU yet";
T
tensor-tang 已提交
94 95 96 97 98

    // set device id before Layer::init
    setDevice(MKLDNN_DEVICE);
    // change param device to MKLDNN device
    setParamsDevice(MKLDNN_DEVICE, parameterMap);
T
tensor-tang 已提交
99 100 101
    if (!Layer::init(layerMap, parameterMap)) {
      return false;
    }
102
    checkCPUOutputsNumber();
T
tensor-tang 已提交
103

104 105
    stream_.reset(new MKLDNNStream());
    engine_ = CPUEngine::Instance().getEngine();
T
tensor-tang 已提交
106 107
    return true;
  }
T
tensor-tang 已提交
108

109 110 111 112 113 114
  void forward(PassType passType) override {
    passType_ = passType;

    {
      REGISTER_TIMER_INFO("mkldnn_FwdTimer", getName().c_str());
      CHECK(!inputLayers_.empty());
115
      copySeqInfoToOutputs();
116 117
      size_t elemenCnt = inputLayers_[0]->getOutput().value->getElementCnt();
      if (inputElemenCnt_ != elemenCnt) {
T
tensor-tang 已提交
118
        VLOG(MKLDNN_BASE) << getName() << " reset mkldnn forward";
119
        // reset when input total sizes changed, not only the batchsize
120
        inputElemenCnt_ = elemenCnt;
121 122
        reshape(bs_, ic_, ih_, iw_, oc_, oh_, ow_);
        resetFwd(pipelineFwd_, inVal_, wgtVal_, biasVal_, outVal_);
123 124 125 126
        if (outVal_) {
          // change original output value to mkldnn output value
          output_.value = std::dynamic_pointer_cast<Matrix>(outVal_);
        }
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
        convertWeightsFromPaddle();
        needResetBwd_ = true;
      }

      if (inputLayers_[0]->getType() == "data") {
        updateInputData();
      }

      stream_->submit(pipelineFwd_);
    }

    /* activation */ {
      REGISTER_TIMER_INFO("FwActTimer", getName().c_str());
      forwardActivation();
    }
  }

  void backward(const UpdateCallback& callback) override {
T
tensor-tang 已提交
145
    if (needResetBwd_) {
T
tensor-tang 已提交
146
      VLOG(MKLDNN_BASE) << getName() << " reset mkldnn backward";
T
tensor-tang 已提交
147 148 149 150
      resetBwd(pipelineBwd_, inGrad_, wgtGrad_, biasGrad_, outGrad_);
      needResetBwd_ = false;
    }
    {
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
      REGISTER_TIMER_INFO("BpActTimer", getName().c_str());
      backwardActivation();
    }
    {
      REGISTER_TIMER_INFO("mkldnn_bwdTimer", getName().c_str());
      stream_->submit(pipelineBwd_);
    }

    {
      REGISTER_TIMER_INFO("WeightUpdate", getName().c_str());
      updateWeights(callback);
    }
  }

  /**
   * reshape the input image sizes
   * and reset output image and buffer size
168
   * output channel can not be changed
169
   */
170 171
  virtual void reshape(
      int& bs, int& ic, int& ih, int& iw, int oc, int& oh, int& ow) = 0;
172 173 174 175 176

  /**
   * reset the mkldnn forward primitve and memory
   * only would be called when input size changes
   */
177 178 179 180 181
  virtual void resetFwd(std::vector<mkldnn::primitive>& pipeline,
                        MKLDNNMatrixPtr& in,
                        MKLDNNMatrixPtr& wgt,
                        MKLDNNMatrixPtr& bias,
                        MKLDNNMatrixPtr& out) = 0;
182 183 184 185 186

  /**
   * reset the mkldnn backward primitve and memory for mkldnn fc
   * only would be called when needed
   */
187 188 189 190 191
  virtual void resetBwd(std::vector<mkldnn::primitive>& pipeline,
                        MKLDNNMatrixPtr& in,
                        MKLDNNMatrixPtr& wgt,
                        MKLDNNMatrixPtr& bias,
                        MKLDNNMatrixPtr& out) = 0;
192 193 194 195 196 197 198 199 200 201 202 203

  /**
   * Update input value data when input layer is "data" type.
   * Since the input value data address might be changed.
   */
  virtual void updateInputData() {}

  /**
   * Update weights and biases if necessary.
   */
  virtual void updateWeights(const UpdateCallback& callback) {}

T
tensor-tang 已提交
204 205 206 207
  /**
   * convert weight from paddle format to mkldnn format
   * weight_ will be override
   */
208
  virtual void convertWeightsFromPaddle() {}
T
tensor-tang 已提交
209 210 211 212 213

  /**
   * convert mkldnn weight to paddle format
   * weight_ will be override
   */
214
  virtual void convertWeightsToPaddle() {}
T
tensor-tang 已提交
215

216
  /**
217
   * add this interface as public for unit test
218
   */
219 220 221 222 223 224
  void addOutputArgument(int deviceId) { Layer::addOutputArgument(deviceId); }

protected:
  /**
   * reshape the input image sizes and input batchsize
   */
225
  virtual void reshapeInput(int& batchsize, int& height, int& width) {
226
    const Argument& input = inputLayers_[0]->getOutput();
227 228 229 230 231
    batchsize = input.getBatchSize();
    int h = input.getFrameHeight();
    int w = input.getFrameWidth();
    if (h != 0) {
      height = h;
232
    }
233 234
    if (w != 0) {
      width = w;
235 236 237 238 239 240 241 242 243 244 245 246 247 248
    }
  }

  /**
   * reshape output image sizes
   */
  virtual void reshapeOutput(size_t height, size_t width) {
    output_.setFrameHeight(height);
    output_.setFrameWidth(width);
    for (size_t i = 0; i < outputOtherDevice_.size(); i++) {
      outputOtherDevice_[i].setFrameHeight(height);
      outputOtherDevice_[i].setFrameWidth(width);
    }
  }
249

T
tensor-tang 已提交
250 251 252 253 254 255 256 257
  /**
   * print info about sizes
   */
  virtual void printSizeInfo() {
    VLOG(MKLDNN_SIZES) << getName() << ": bs: " << bs_ << ", ic: " << ic_
                       << ", ih: " << ih_ << ", iw: " << iw_ << ", oc: " << oc_
                       << ", oh: " << oh_ << ", ow: " << ow_;
  }
T
tensor-tang 已提交
258

259 260 261 262 263
  /**
   * Print the mkldnn memory format flow of value
   */
  virtual void printValueFormatFlow() {
    if (inVal_ && outVal_) {
264 265
      VLOG(MKLDNN_FMTS) << inVal_->getFormat() << " >>> "
                        << outVal_->getFormat();
266
    }
T
tensor-tang 已提交
267
  }
T
tensor-tang 已提交
268

269 270 271 272 273
  /**
   * Print the mkldnn memory format flow of grad
   */
  virtual void printGradFormatFlow() {
    if (inGrad_ && outGrad_) {
274 275
      VLOG(MKLDNN_FMTS) << inGrad_->getFormat() << " <<< "
                        << outGrad_->getFormat();
276
    }
T
tensor-tang 已提交
277 278 279
  }

protected:
280
  /**
T
rename  
tensor-tang 已提交
281
   * If input only has MKLDNN device.
T
refine  
tensor-tang 已提交
282
   * Otherwise, only support the previous layer using CPU device.
283
   */
T
rename  
tensor-tang 已提交
284
  bool inputIsOnlyMKLDNN(int index = 0) {
285 286 287 288 289 290 291 292 293 294
    int prevDevice = getPrev(index)->getDeviceId();
    if (prevDevice == MKLDNN_DEVICE) {
      return true;
    } else {
      // do not support GPU yet
      CHECK_EQ(prevDevice, CPU_DEVICE) << "Only support CPU yet";
      return false;
    }
  }

T
refine  
tensor-tang 已提交
295 296 297 298
  /**
   * If output only has MKLDNN device.
   * Otherwise, other devices should only using CPU device.
   */
T
rename  
tensor-tang 已提交
299
  bool outputIsOnlyMKLDNN() {
T
refine  
tensor-tang 已提交
300 301 302 303 304 305 306
    for (size_t i = 0; i < outputOtherDevice_.size(); i++) {
      CHECK_EQ(outputOtherDevice_[i].deviceId, CPU_DEVICE)
          << "Only support other device is CPU yet";
    }
    return outputOtherDevice_.size() == 0;
  }

T
tensor-tang 已提交
307 308 309 310 311
  /**
   * Set deviceId of this layer.
   */
  void setDevice(int id) { deviceId_ = id; }

312
private:
T
tensor-tang 已提交
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
  /**
   * Set deviceId of the params used in this layer.
   */
  void setParamsDevice(int id, const ParameterMap& parameterMap) {
    for (auto& inputConfig : config_.inputs()) {
      if (inputConfig.has_input_parameter_name()) {
        ParameterPtr parameter;
        std::string name = inputConfig.input_parameter_name();
        CHECK(mapGet(name, parameterMap, &parameter))
            << "Cannot find input parameter " << name << " for layer "
            << getName();
        parameter->setDevice(id);
      }
    }
    if (config_.has_bias_parameter_name()) {
      ParameterPtr parameter;
      std::string name = config_.bias_parameter_name();
      CHECK(mapGet(name, parameterMap, &parameter))
          << "Cannot find bias parameter " << name << " for layer "
          << getName();
      parameter->setDevice(id);
    }
T
tensor-tang 已提交
335
  }
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371

  /**
   * Check the cpu device number of outputOtherDevice_.
   * should have only one at most.
   */
  void checkCPUOutputsNumber(int max = 1) {
    int cnt = 0;
    for (size_t i = 0; i < outputOtherDevice_.size(); i++) {
      if (outputOtherDevice_[i].deviceId == CPU_DEVICE) {
        ++cnt;
      }
    }
    CHECK_LE(cnt, max) << "too much CPU devies";
  }

  /**
   * copy SeqInfo from input layer to this output and other output devices.
   * @note: do not use getInput(0) since it used this deviceId_,
   *        use "inputLayers_[0]->getOutput()" instead.
   */
  void copySeqInfoToOutputs() {
    if (inputLayers_.empty() || !needSequenceInfo_) {
      return;
    }
    const Argument& input = inputLayers_[0]->getOutput();
    output_.sequenceStartPositions = input.sequenceStartPositions;
    output_.subSequenceStartPositions = input.subSequenceStartPositions;
    output_.cpuSequenceDims = input.cpuSequenceDims;
    for (size_t i = 0; i < outputOtherDevice_.size(); i++) {
      outputOtherDevice_[i].sequenceStartPositions =
          output_.sequenceStartPositions;
      outputOtherDevice_[i].subSequenceStartPositions =
          output_.subSequenceStartPositions;
      outputOtherDevice_[i].cpuSequenceDims = output_.cpuSequenceDims;
    }
  }
T
tensor-tang 已提交
372 373 374
};

}  // namespace paddle