io.py 53.3 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
import os
T
bug fix  
tangwei12 已提交
18
import errno
D
dzhwinter 已提交
19
import warnings
20
import six
21
import logging
22
from functools import reduce
23

24
from paddle.fluid import layers
X
Xin Pan 已提交
25
from paddle.fluid.executor import Executor
26
from paddle.fluid.evaluator import Evaluator
27
from paddle.fluid.framework import Program, Parameter, default_main_program, default_startup_program, Variable, program_guard
28
from paddle.fluid.log_helper import get_logger
S
sneaxiy 已提交
29 30
from . import reader
from .reader import *
K
fix bug  
Kexin Zhao 已提交
31
from . import core
32
from .. import compat as cpt
33 34

__all__ = [
T
tangwei12 已提交
35
    'save_vars', 'save_params', 'save_persistables', 'load_vars', 'load_params',
36
    'load_persistables', 'save_inference_model', 'load_inference_model'
S
sneaxiy 已提交
37
] + reader.__all__
38

39 40
_logger = get_logger(
    __name__, logging.INFO, fmt='%(asctime)s-%(levelname)s: %(message)s')
41

42 43

def is_parameter(var):
F
fengjiayi 已提交
44 45
    """
    Check whether the given variable is an instance of Parameter.
46 47

    Args:
F
fengjiayi 已提交
48
        var(Variable): The variable to be checked.
49 50

    Returns:
F
fengjiayi 已提交
51 52 53 54 55 56
        bool: True if the given `var` is an instance of Parameter,
        False if not.

    Examples:
        .. code-block:: python

57
            import paddle.fluid as fluid
F
fengjiayi 已提交
58 59
            param = fluid.default_main_program().global_block().var('fc.w')
            res = fluid.io.is_parameter(param)
60
    """
61 62 63 64
    return isinstance(var, Parameter)


def is_persistable(var):
F
fengjiayi 已提交
65 66 67 68 69 70 71 72 73 74 75 76 77
    """
    Check whether the given variable is persistable.

    Args:
        var(Variable): The variable to be checked.

    Returns:
        bool: True if the given `var` is persistable
        False if not.

    Examples:
        .. code-block:: python

78
            import paddle.fluid as fluid
79
            param = fluid.default_main_program().global_block().var('fc.b')
F
fengjiayi 已提交
80 81
            res = fluid.io.is_persistable(param)
    """
82
    if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
Y
yuyang18 已提交
83 84
            var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
            var.desc.type() == core.VarDesc.VarType.READER:
85
        return False
86 87 88 89 90 91 92 93
    return var.persistable


def _clone_var_in_block_(block, var):
    assert isinstance(var, Variable)
    return block.create_var(
        name=var.name,
        shape=var.shape,
F
fengjiayi 已提交
94
        dtype=var.dtype,
95 96 97 98 99
        type=var.type,
        lod_level=var.lod_level,
        persistable=True)


100 101 102 103 104
def save_vars(executor,
              dirname,
              main_program=None,
              vars=None,
              predicate=None,
105
              filename=None):
106
    """
F
fengjiayi 已提交
107 108
    Save variables to the given directory by executor.

109 110 111 112
    There are two ways to specify variables to be saved: The first way, list
    variables in a list and assign it to the `vars`. The second way, assign the
    `main_program` with an existing program, then all variables in the program
    will be saved. The first way has a higher priority. In other words, if `vars`
F
fengjiayi 已提交
113
    are assigned, the `main_program` and the `predicate` will be ignored.
114

115 116 117
    The `dirname` are used to specify the folder where to save variables.
    If you prefer to save variables in separate files in the folder `dirname`,
    set `filename` None; if you prefer to save all variables in a single file,
F
fengjiayi 已提交
118
    use `filename` to specify it.
119

F
fengjiayi 已提交
120 121 122
    Args:
        executor(Executor): The executor to run for saving variables.
        dirname(str): The directory path.
123 124
        main_program(Program|None): The program whose variables will be saved.
                                    If it is None, the default main program will
F
fengjiayi 已提交
125 126
                                    be used automatically.
                                    Default: None
127
        vars(list[Variable]|None): The list that contains all variables to save.
F
fengjiayi 已提交
128 129
                                   It has a higher priority than the `main_program`.
                                   Default: None
130 131 132 133
        predicate(function|None): If it is not None, only variables in the
                                  `main_program` that makes predicate(variable)==True
                                  will be saved. It only works when we are using the
                                  `main_program` to specify variables (In other words
F
fengjiayi 已提交
134 135
                                  `vars` is None).
                                  Default: None
136
        filename(str|None): The file which to save all variables. If you prefer to save
F
fengjiayi 已提交
137 138 139 140 141 142 143 144 145 146 147 148
                            variables separately, set it to None.
                            Default: None

    Returns:
        None

    Raises:
        TypeError: If `main_program` is not an instance of Program nor None.

    Examples:
        .. code-block:: python

149 150 151 152 153 154 155 156 157 158 159 160
            import paddle.fluid as fluid
            main_prog = fluid.Program()
            startup_prog = fluid.Program()
            with fluid.program_guard(main_prog, startup_prog):
                data = fluid.layers.data(name="img", shape=[64, 784], append_batch_size=False)
                w = fluid.layers.create_parameter(shape=[784, 200], dtype='float32', name='fc_w')
                b = fluid.layers.create_parameter(shape=[200], dtype='float32', name='fc_b')
                hidden_w = fluid.layers.matmul(x=data, y=w)
                hidden_b = fluid.layers.elementwise_add(hidden_w, b)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_prog)
F
fengjiayi 已提交
161

162
            param_path = "./my_paddle_model"
F
fengjiayi 已提交
163 164 165 166
            # The first usage: using `main_program` to specify variables
            def name_has_fc(var):
                res = "fc" in var.name
                return res
167
            fluid.io.save_vars(executor=exe, dirname=param_path, main_program=main_prog,
C
chengduo 已提交
168
                               vars=None, predicate = name_has_fc)
F
fengjiayi 已提交
169 170 171 172 173
            # All variables in `main_program` whose name includes "fc" will be saved.
            # And variables are going to be saved separately.


            # The second usage: using `vars` to specify variables
174 175
            var_list = [w, b]
            path = "./my_paddle_vars"
176
            fluid.io.save_vars(executor=exe, dirname=path, vars=var_list,
F
fengjiayi 已提交
177 178
                               filename="vars_file")
            # var_a, var_b and var_c will be saved. And they are going to be
179
            # saved in the same file named 'var_file' in the path "./my_paddle_vars".
180
    """
L
lujun 已提交
181
    save_dirname = os.path.normpath(dirname)
182
    if vars is None:
183
        if main_program is None:
Y
Yu Yang 已提交
184
            main_program = default_main_program()
185
        if not isinstance(main_program, Program):
186 187 188 189
            raise TypeError("program should be as Program type or None")

        save_vars(
            executor,
190
            main_program=main_program,
L
lujun 已提交
191
            dirname=save_dirname,
192
            vars=list(filter(predicate, main_program.list_vars())),
193
            filename=filename)
194 195 196
    else:
        save_program = Program()
        save_block = save_program.global_block()
197

198 199 200 201 202
        if main_program is None:
            main_program = default_main_program()
        if not isinstance(main_program, Program):
            raise TypeError("program should be as Program type or None")

203
        save_var_map = {}
204
        for each_var in vars:
205 206 207
            # NOTE: don't save the variable which type is RAW
            if each_var.type == core.VarDesc.VarType.RAW:
                continue
208
            new_var = _clone_var_in_block_(save_block, each_var)
209
            if filename is None:
210 211 212 213
                save_block.append_op(
                    type='save',
                    inputs={'X': [new_var]},
                    outputs={},
L
lujun 已提交
214 215 216
                    attrs={
                        'file_path': os.path.join(save_dirname, new_var.name)
                    })
217 218 219
            else:
                save_var_map[new_var.name] = new_var

220
        if filename is not None:
221 222 223 224
            save_var_list = []
            for name in sorted(save_var_map.keys()):
                save_var_list.append(save_var_map[name])

225
            save_block.append_op(
226 227
                type='save_combine',
                inputs={'X': save_var_list},
228
                outputs={},
L
lujun 已提交
229
                attrs={'file_path': os.path.join(save_dirname, filename)})
230

231 232 233
        executor.run(save_program)


234
def save_params(executor, dirname, main_program=None, filename=None):
235
    """
F
fengjiayi 已提交
236 237 238
    This function filters out all parameters from the give `main_program`
    and then save them to the folder `dirname` or the file `filename`.

239 240 241
    Use the `dirname` to specify the saving folder. If you would like to
    save parameters in separate files, set `filename` None; if you would
    like to save all parameters in a single file, use `filename` to specify
F
fengjiayi 已提交
242 243
    the file name.

244 245 246
    NOTICE: Some variables are not Parameter while they are necessary for
    training. So you can NOT save and continue your training just by
    `save_params()` and `load_params()`. Please use `save_persistables()`
247 248 249
    and `load_persistables()` instead. If you want to save your model for
    the inference, please use the `save_inference_model` API. You can refer
    to :ref:`api_guide_model_save_reader_en` for more details.
F
fengjiayi 已提交
250 251 252 253 254 255 256 257

    Args:
        executor(Executor): The executor to run for saving parameters.
        dirname(str): The saving directory path.
        main_program(Program|None): The program whose parameters will be
                                    saved. If it is None, the default
                                    main program will be used automatically.
                                    Default: None
258 259
        filename(str|None): The file to save all parameters. If you prefer
                            to save parameters in differnet files, set it
F
fengjiayi 已提交
260 261 262 263 264 265 266 267 268 269 270 271
                            to None.
                            Default: None

    Returns:
        None

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
272
            fluid.io.save_params(executor=exe, dirname=param_path,
F
fengjiayi 已提交
273
                                 main_program=None)
274 275 276 277
    """
    save_vars(
        executor,
        dirname=dirname,
278
        main_program=main_program,
279
        vars=None,
280
        predicate=is_parameter,
281
        filename=filename)
282 283


284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
def _save_distributed_persistables(executor, dirname, main_program):
    """
    save_persistables for distributed training.
    the method will do things listed below:
    1.save part of persistable variables on trainer.
    2.receive "remote prefetch variables" from parameter servers and merge them.
    3.save "distributed lookup table" on parameter servers.
    4.receive "optimizer variables" from parameter servers and merge them.

    Args:
        executor(Executor): The executor to run for saving parameters.
        dirname(str): The saving directory path.
        main_program(Program): The program whose parameters will be
                            saved. the main_program must be the trainer_program
                            get after transpiler.

    Returns:
        None

    Examples:
        .. code-block:: python

306
            import paddle.fluid as fluid
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            t = distribute_transpiler.DistributeTranspiler()
            t.transpile(...)
            train_program = t.get_trainer_program()
            _save_distributed_persistables(executor=exe, dirname=param_path, main_program=train_program)
    """

    def __save_remote_params(executor, dirname, remote_params_map):
        """
        recive params on pserver through rpc.
        if the params are be sliced, will concat them to one, then save it.
        """
        if not remote_params_map:
            return

        prog = Program()
        block = prog.global_block()

        # recv optimize vars from pserver
        for name, remote_params in remote_params_map.items():
            origin_var = None
            is_slice = False
            slice_vars = [0] * len(remote_params)
            slice_var_names = [""] * len(remote_params)
            endpoints = [""] * len(remote_params)

            for idx, optimizer in enumerate(remote_params):
                origin = optimizer.origin
                slice = optimizer.slice
                is_slice = optimizer.is_slice
                block_id = optimizer.block_id
                endpoint = optimizer.endpoint

                if idx == 0:
                    origin_var = block.create_var(
                        name=origin.name,
                        type=origin.type,
                        shape=origin.shape,
                        dtype=origin.dtype,
                        persistable=True)

                slice_var = block.create_var(
                    name="{}.slice.{}".format(slice.name, idx),
                    type=slice.type,
                    shape=slice.shape,
                    dtype=slice.dtype,
                    persistable=True)

                index = block_id if is_slice else idx
                slice_vars[index] = slice_var
                slice_var_names[index] = slice.name
                endpoints[index] = endpoint

            if is_slice:
                block.append_op(
                    type='recv',
                    inputs={"X": []},
                    outputs={"Out": slice_vars},
                    attrs={
                        "epmap": endpoints,
                        "with_barrier": False,
                        "varnames": slice_var_names,
                        "sync_mode": True
                    })
                block.append_op(
                    type='concat',
                    inputs={'X': slice_vars},
                    outputs={'Out': origin_var},
                    attrs={})
            else:
                block.append_op(
                    type='recv',
                    inputs={"X": []},
                    outputs={"Out": [origin_var]},
                    attrs={
                        "epmap": endpoints[:1],
                        "with_barrier": False,
                        "varnames": slice_var_names,
                        "sync_mode": True
                    })
            block.append_op(
                type='save',
                inputs={'X': [origin_var]},
                outputs={},
                attrs={'file_path': os.path.join(dirname, origin_var.name)})
            block.append_op(type='delete_var', inputs={'X': slice_vars})
        executor.run(prog)

    def __save_distributed_lookup_tables(executor, dirname,
                                         distributed_lookup_table, endpoints):
        """
        because the distributed lookup table may too huge to merge and save at one place,
        it will be saved at parameter server independent respectively.

        the save directory is dirname/"__lookup_table__".

        """
        prog = Program()
        block = prog.global_block()

        # if there is lookup table, the trainer 0 will notify all pserver to save.
        lookup_table_filename = os.path.join(dirname, "__lookup_table__")
        attrs = {}
        attrs['epmap'] = endpoints
        attrs['dir'] = lookup_table_filename
        attrs['lookup_table'] = distributed_lookup_table
        block.append_op(
            type='checkpoint_notify', inputs={}, outputs={}, attrs=attrs)
        executor.run(prog)

    def __exclude_vars(exclude_var_names=[]):
        def is_valid(var):
            if var.name in exclude_var_names:
                return False
            if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
                        var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
                        var.desc.type() == core.VarDesc.VarType.READER:
                return False
            return var.persistable

        return is_valid

    if not isinstance(main_program, Program):
        raise ValueError("'main_program' should be an instance of Program.")

    if not main_program._is_distributed:
        raise ValueError(
            "'_save_distributed_persistables' just be designed for distributed training."
        )

    remote_params_map = main_program._parameters_on_pservers.get_distributed_vars_by_vtypes(
        ["Optimizer", "RemotePrefetch"], groupby=True)

    exclude_var_names = []
    if remote_params_map:
        exclude_var_names.extend(remote_params_map.keys())

    if main_program._distributed_lookup_table:
        if isinstance(main_program._distributed_lookup_table, list):
            exclude_var_names.extend(main_program._distributed_lookup_table)
        else:
            exclude_var_names.append(main_program._distributed_lookup_table)

    local_vars = list(
        filter(__exclude_vars(exclude_var_names), main_program.list_vars()))
    save_vars(
        executor, main_program=main_program, dirname=dirname, vars=local_vars)

    if main_program._is_chief:
        if remote_params_map:
            __save_remote_params(executor, dirname, remote_params_map)
        if main_program._distributed_lookup_table:
            __save_distributed_lookup_tables(
                executor, dirname, main_program._distributed_lookup_table,
                main_program._endpoints)


465
def save_persistables(executor, dirname, main_program=None, filename=None):
466
    """
467 468
    This function filters out all variables with `persistable==True` from the
    give `main_program` and then saves these variables to the folder `dirname`
F
fengjiayi 已提交
469 470
    or file `filename`.

471 472 473
    The `dirname` is used to specify the folder where persistable variables
    are going to be saved. If you would like to save variables in separate
    files, set `filename` None; if you would like to save all variables in a
F
fengjiayi 已提交
474 475 476 477 478
    single file, use `filename` to specify the file name.

    Args:
        executor(Executor): The executor to run for saving persistable variables.
        dirname(str): The directory path.
479 480
        main_program(Program|None): The program whose persistbale variables will
                                    be saved. If it is None, the default main
F
fengjiayi 已提交
481 482
                                    program will be used automatically.
                                    Default: None
483
        filename(str|None): The file to saved all variables. If you prefer to
F
fengjiayi 已提交
484 485 486 487 488 489 490 491 492 493 494
                            save variables in differnet files, set it to None.
                            Default: None

    Returns:
        None

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
495
            # `prog` can be a program defined by the user
F
fengjiayi 已提交
496
            prog = fluid.default_main_program()
497
            fluid.io.save_persistables(executor=exe, dirname=param_path,
498
                                       main_program=prog)
499
    """
500 501 502 503 504 505 506 507 508 509 510 511 512

    if main_program and main_program._is_distributed:
        _save_distributed_persistables(
            executor, dirname=dirname, main_program=main_program)

    else:
        save_vars(
            executor,
            dirname=dirname,
            main_program=main_program,
            vars=None,
            predicate=is_persistable,
            filename=filename)
513 514


515 516 517 518 519
def load_vars(executor,
              dirname,
              main_program=None,
              vars=None,
              predicate=None,
520
              filename=None):
521
    """
F
fengjiayi 已提交
522 523
    Load variables from the given directory by executor.

524 525 526 527
    There are two ways to specify variables to be loaded: The first way, list
    variables in a list and assign it to the `vars`. The second way, assign the
    `main_program` with an existing program, then all variables in the program
    will be loaded. The first way has a higher priority. In other words if `vars`
F
fengjiayi 已提交
528 529
    are assigned, the `main_program` and the `predicate` will be ignored.

530 531 532
    The `dirname` are used to specify the folder where to load variables.
    If variables were saved in separate files in the folder `dirname`,
    set `filename` None; if all variables were saved in a single file,
F
fengjiayi 已提交
533
    use `filename` to specify it.
534

F
fengjiayi 已提交
535 536 537
    Args:
        executor(Executor): The executor to run for loading variables.
        dirname(str): The directory path.
538 539
        main_program(Program|None): The program whose variables will be loaded.
                                    If it is None, the default main program will
F
fengjiayi 已提交
540 541
                                    be used automatically.
                                    Default: None
542
        vars(list[Variable]|None): The list that contains all variables to load.
F
fengjiayi 已提交
543 544
                                   It has a higher priority than the `main_program`.
                                   Default: None
545 546 547 548
        predicate(function|None): If it is not None, only variables in the
                                  `main_program` that makes predicate(variable)==True
                                  will be loaded. It only works when we are using the
                                  `main_program` to specify variables (In other words
F
fengjiayi 已提交
549 550
                                  `vars` is None).
                                  Default: None
551
        filename(str|None): The file which saved all required variables. If variables
F
fengjiayi 已提交
552 553 554 555 556 557 558 559 560 561 562 563
                            were saved in differnet files, set it to None.
                            Default: None

    Returns:
        None

    Raises:
        TypeError: If `main_program` is not an instance of Program nor None.

    Examples:
        .. code-block:: python

564 565 566 567 568 569 570 571 572 573 574 575
            import paddle.fluid as fluid
            main_prog = fluid.Program()
            startup_prog = fluid.Program()
            with fluid.program_guard(main_prog, startup_prog):
                data = fluid.layers.data(name="img", shape=[64, 784], append_batch_size=False)
                w = fluid.layers.create_parameter(shape=[784, 200], dtype='float32', name='fc_w')
                b = fluid.layers.create_parameter(shape=[200], dtype='float32', name='fc_b')
                hidden_w = fluid.layers.matmul(x=data, y=w)
                hidden_b = fluid.layers.elementwise_add(hidden_w, b)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_prog)
F
fengjiayi 已提交
576

577
            param_path = "./my_paddle_model"
F
fengjiayi 已提交
578 579 580 581
            # The first usage: using `main_program` to specify variables
            def name_has_fc(var):
                res = "fc" in var.name
                return res
582 583 584
            fluid.io.save_vars(executor=exe, dirname=param_path, main_program=main_prog,
                              vars=None, predicate=name_has_fc)
            fluid.io.load_vars(executor=exe, dirname=param_path, main_program=main_prog,
C
chengduo 已提交
585
                               vars=None, predicate=name_has_fc)
F
fengjiayi 已提交
586 587 588 589
            # All variables in `main_program` whose name includes "fc" will be loaded.
            # And all the variables are supposed to have been saved in differnet files.

            # The second usage: using `vars` to specify variables
590 591 592 593
            path = "./my_paddle_vars"
            var_list = [w, b]
            fluid.io.save_vars(executor=exe, dirname=path, vars=var_list,
                               filename="vars_file")
594
            fluid.io.load_vars(executor=exe, dirname=path, vars=var_list,
F
fengjiayi 已提交
595
                               filename="vars_file")
596 597
            # w and b will be loaded. And they are supposed to haven
            # been saved in the same file named 'var_file' in the path "./my_paddle_vars".
598
    """
L
lujun 已提交
599
    load_dirname = os.path.normpath(dirname)
600
    if vars is None:
601
        if main_program is None:
Y
Yu Yang 已提交
602
            main_program = default_main_program()
603
        if not isinstance(main_program, Program):
604 605 606 607
            raise TypeError("program's type should be Program")

        load_vars(
            executor,
L
lujun 已提交
608
            dirname=load_dirname,
T
tangwei12 已提交
609
            main_program=main_program,
610
            vars=list(filter(predicate, main_program.list_vars())),
611
            filename=filename)
612 613 614
    else:
        load_prog = Program()
        load_block = load_prog.global_block()
615

616 617 618 619 620
        if main_program is None:
            main_program = default_main_program()
        if not isinstance(main_program, Program):
            raise TypeError("program should be as Program type or None")

621
        load_var_map = {}
622 623
        for each_var in vars:
            assert isinstance(each_var, Variable)
T
tangwei12 已提交
624 625
            if each_var.type == core.VarDesc.VarType.RAW:
                continue
626
            new_var = _clone_var_in_block_(load_block, each_var)
627
            if filename is None:
628 629 630 631
                load_block.append_op(
                    type='load',
                    inputs={},
                    outputs={'Out': [new_var]},
L
lujun 已提交
632 633 634
                    attrs={
                        'file_path': os.path.join(load_dirname, new_var.name)
                    })
635 636 637
            else:
                load_var_map[new_var.name] = new_var

638
        if filename is not None:
639 640 641 642
            load_var_list = []
            for name in sorted(load_var_map.keys()):
                load_var_list.append(load_var_map[name])

643
            load_block.append_op(
644
                type='load_combine',
645
                inputs={},
646
                outputs={"Out": load_var_list},
L
lujun 已提交
647
                attrs={'file_path': os.path.join(load_dirname, filename)})
648 649 650
        executor.run(load_prog)


651
def load_params(executor, dirname, main_program=None, filename=None):
652
    """
F
fengjiayi 已提交
653
    This function filters out all parameters from the give `main_program`
F
fengjiayi 已提交
654
    and then trys to load these parameters from the folder `dirname` or
F
fengjiayi 已提交
655 656
    the file `filename`.

657 658 659
    Use the `dirname` to specify the folder where parameters were saved. If
    parameters were saved in separate files in the folder `dirname`, set
    `filename` None; if all parameters were saved in a single file, use
F
fengjiayi 已提交
660 661
    `filename` to specify the file name.

662 663 664 665
    NOTICE: Some variables are not Parameter while they are necessary for
    training. So you can NOT save and continue your training just by
    `save_params()` and `load_params()`. Please use `save_persistables()`
    and `load_persistables()` instead.
666 667 668
    If you want to load the pre-trained model structure and parameters
    for the inference, please use the `load_inference_model` API. You can
    refer to :ref:`api_guide_model_save_reader_en` for more details.
F
fengjiayi 已提交
669 670 671 672 673 674 675 676

    Args:
        executor(Executor): The executor to run for loading parameters.
        dirname(str): The directory path.
        main_program(Program|None): The program whose parameters will be
                                    loaded. If it is None, the default
                                    main program will be used automatically.
                                    Default: None
677
        filename(str|None): The file which saved all parameters. If parameters
F
fengjiayi 已提交
678 679 680 681 682 683 684 685 686
                            were saved in differnet files, set it to None.
                            Default: None

    Returns:
        None

    Examples:
        .. code-block:: python

687
            import paddle.fluid as fluid
F
fengjiayi 已提交
688 689 690
            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
691
            fluid.io.load_params(executor=exe, dirname=param_path,
F
fengjiayi 已提交
692
                                main_program=None)
693 694
    """
    load_vars(
695 696 697
        executor,
        dirname=dirname,
        main_program=main_program,
698
        predicate=is_parameter,
699
        filename=filename)
700 701


702
def load_persistables(executor, dirname, main_program=None, filename=None):
703
    """
704 705
    This function filters out all variables with `persistable==True` from the
    give `main_program` and then trys to load these variables from the folder
F
fengjiayi 已提交
706 707
    `dirname` or the file `filename`.

708 709 710
    Use the `dirname` to specify the folder where persistable variables were
    saved. If variables were saved in separate files, set `filename` None;
    if all variables were saved in a single file, use `filename` to specify
F
fengjiayi 已提交
711 712 713 714 715
    the file name.

    Args:
        executor(Executor): The executor to run for loading persistable variables.
        dirname(str): The directory path.
716 717
        main_program(Program|None): The program whose persistbale variables will
                                    be loaded. If it is None, the default main
F
fengjiayi 已提交
718 719
                                    program will be used automatically.
                                    Default: None
720
        filename(str|None): The file which saved all variables. If variables were
F
fengjiayi 已提交
721 722 723 724 725 726 727 728 729
                            saved in differnet files, set it to None.
                            Default: None

    Returns:
        None

    Examples:
        .. code-block:: python

730
            import paddle.fluid as fluid
F
fengjiayi 已提交
731 732 733
            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
734
            fluid.io.load_persistables(executor=exe, dirname=param_path,
F
fengjiayi 已提交
735
                                       main_program=None)
736
    """
737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767

    if main_program and main_program._is_distributed:
        _load_distributed_persistables(
            executor, dirname=dirname, main_program=main_program)
    else:
        load_vars(
            executor,
            dirname=dirname,
            main_program=main_program,
            predicate=is_persistable,
            filename=filename)


def _load_distributed_persistables(executor, dirname, main_program=None):
    """
    customized load_persistables for distributed training.
    it should be used on parameter server,

    Args:
        executor(Executor): The executor to run for saving parameters.
        dirname(str): The load directory path.
        main_program(Program): The program whose parameters will be
                            loaded. the main_program must be the pserver_program
                            get after transpiler.

    Returns:
        None

    Examples:
        .. code-block:: python

768
            import paddle.fluid as fluid
769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815
            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            t = distribute_transpiler.DistributeTranspiler()
            t.transpile(...)
            pserver_prog = t.get_pserver_program(...)
            _load_distributed_persistables(executor=exe, dirname=param_path, main_program=pserver_prog)
    """

    def __is_distributed_part_var(varname):
        trainer_idx = varname.find(".trainer_")
        block_idx = varname.find(".block")
        return trainer_idx or block_idx

    def __load_persistable_vars(executor, dirname, need_load_vars):
        load_prog = Program()
        load_block = load_prog.global_block()
        need_delete_vars = []

        for param in need_load_vars:
            origin_var = param.origin
            slice_var = param.slice
            is_slice = param.is_slice
            offset = param.offset

            if is_slice:
                origin = load_block.create_var(
                    name="{}.load".format(origin_var.name),
                    type=origin_var.type,
                    shape=origin_var.shape,
                    dtype=origin_var.dtype,
                    persistable=True)

                load_block.append_op(
                    type='load',
                    inputs={},
                    outputs={'Out': [origin]},
                    attrs={
                        'file_path': os.path.join(dirname, origin_var.name)
                    })

                slice = load_block.create_var(
                    name=slice_var.name,
                    type=slice_var.type,
                    shape=slice_var.shape,
                    dtype=slice_var.dtype,
                    persistable=True)

T
tangwei12 已提交
816 817 818 819
                dim1_flatten = 1
                if len(slice.shape) >= 2:
                    dim1_flatten = reduce(lambda x, y: x * y, slice.shape[1:])

820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868
                start = int(offset / dim1_flatten)
                end = int(offset / dim1_flatten + slice.shape[0])

                load_block.append_op(
                    type="slice",
                    inputs={'Input': origin},
                    outputs={'Out': slice},
                    attrs={'axes': [0],
                           'starts': [start],
                           'ends': [end]})

                need_delete_vars.append(origin)
            else:
                origin = load_block.create_var(
                    name="{}".format(origin_var.name),
                    type=origin_var.type,
                    shape=origin_var.shape,
                    dtype=origin_var.dtype,
                    persistable=True)
                load_block.append_op(
                    type='load',
                    inputs={},
                    outputs={'Out': [origin]},
                    attrs={
                        'file_path': os.path.join(dirname, origin_var.name)
                    })

        load_block.append_op(
            type='delete_var',
            inputs={'X': need_delete_vars}, )

        executor.run(load_prog)

    if not isinstance(main_program, Program):
        raise ValueError("'main_program' should be an instance of Program.")

    if not main_program._is_distributed:
        raise ValueError(
            "'_load_distributed_persistables' just be designed for distributed training."
        )

    if not main_program._ps_endpoint:
        raise ValueError(
            "'_load_distributed_persistables' need current_endpoint set in DistributeTranspiler.transpile"
        )

    need_load_vars = main_program._parameters_on_pservers.get_distributed_vars_by_ep(
        main_program._ps_endpoint)
    __load_persistable_vars(executor, dirname, need_load_vars)
869 870


871 872 873
def prepend_feed_ops(inference_program,
                     feed_target_names,
                     feed_holder_name='feed'):
Q
Qiao Longfei 已提交
874 875 876
    if len(feed_target_names) == 0:
        return

K
Kexin Zhao 已提交
877 878
    global_block = inference_program.global_block()
    feed_var = global_block.create_var(
879 880 881
        name=feed_holder_name,
        type=core.VarDesc.VarType.FEED_MINIBATCH,
        persistable=True)
K
Kexin Zhao 已提交
882

883
    for i, name in enumerate(feed_target_names):
K
fix bug  
Kexin Zhao 已提交
884
        out = global_block.var(name)
W
Wu Yi 已提交
885
        global_block._prepend_op(
K
Kexin Zhao 已提交
886 887
            type='feed',
            inputs={'X': [feed_var]},
K
fix bug  
Kexin Zhao 已提交
888
            outputs={'Out': [out]},
K
Kexin Zhao 已提交
889 890 891
            attrs={'col': i})


892 893 894
def append_fetch_ops(inference_program,
                     fetch_target_names,
                     fetch_holder_name='fetch'):
K
Kexin Zhao 已提交
895 896
    global_block = inference_program.global_block()
    fetch_var = global_block.create_var(
897 898 899
        name=fetch_holder_name,
        type=core.VarDesc.VarType.FETCH_LIST,
        persistable=True)
K
Kexin Zhao 已提交
900

901
    for i, name in enumerate(fetch_target_names):
K
Kexin Zhao 已提交
902 903 904 905 906 907 908
        global_block.append_op(
            type='fetch',
            inputs={'X': [name]},
            outputs={'Out': [fetch_var]},
            attrs={'col': i})


909 910 911 912
def save_inference_model(dirname,
                         feeded_var_names,
                         target_vars,
                         executor,
913
                         main_program=None,
914
                         model_filename=None,
915
                         params_filename=None,
T
tangwei12 已提交
916 917
                         export_for_deployment=True,
                         program_only=False):
918
    """
F
fengjiayi 已提交
919 920
    Prune the given `main_program` to build a new program especially for inference,
    and then save it and all related parameters to given `dirname` by the `executor`.
921 922 923 924
    If you just want to save parameters of your trained model, please use the
    `save_params` API. You can refer to :ref:`api_guide_model_save_reader_en` for
    more details.

F
fengjiayi 已提交
925 926 927

    Args:
        dirname(str): The directory path to save the inference model.
928
        feeded_var_names(list[str]): Names of variables that need to be feeded data
F
fengjiayi 已提交
929
                                     during inference.
930
        target_vars(list[Variable]): Variables from which we can get inference
F
fengjiayi 已提交
931 932
                                     results.
        executor(Executor): The executor that saves the inference model.
933 934
        main_program(Program|None): The original program, which will be pruned to
                                    build the inference model. If is setted None,
F
fengjiayi 已提交
935 936
                                    the default main program will be used.
                                    Default: None.
937 938
        model_filename(str|None): The name of file to save the inference program
                                  itself. If is setted None, a default filename
F
fengjiayi 已提交
939
                                  `__model__` will be used.
940 941
        params_filename(str|None): The name of file to save all related parameters.
                                   If it is setted None, parameters will be saved
F
fengjiayi 已提交
942
                                   in separate files .
X
Xin Pan 已提交
943 944 945 946 947
        export_for_deployment(bool): If True, programs are modified to only support
                                     direct inference deployment. Otherwise,
                                     more information will be stored for flexible
                                     optimization and re-training. Currently, only
                                     True is supported.
T
tangwei12 已提交
948
        program_only(bool): If True, It will save inference program only, and do not save params of Program.
949

F
fengjiayi 已提交
950
    Returns:
F
flame 已提交
951
        target_var_name_list(list): The fetch variables' name list
F
fengjiayi 已提交
952 953 954 955 956 957 958

    Raises:
        ValueError: If `feed_var_names` is not a list of basestring.
        ValueError: If `target_vars` is not a list of Variable.

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
959

960 961
            import paddle.fluid as fluid

F
fengjiayi 已提交
962 963
            path = "./infer_model"

964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985
            # User defined network, here a softmax regresssion example
            image = fluid.layers.data(name='img', shape=[1, 28, 28], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            feeder = fluid.DataFeeder(feed_list=[image, label], place=fluid.CPUPlace())
            predict = fluid.layers.fc(input=image, size=10, act='softmax')

            loss = fluid.layers.cross_entropy(input=predict, label=label)
            avg_loss = fluid.layers.mean(loss)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            # Feed data and train process

            # Save inference model. Note we don't save label and loss in this example
            fluid.io.save_inference_model(dirname=path,
                                          feeded_var_names=['img'],
                                          target_vars=[predict],
                                          executor=exe)

            # In this example, the function will prune the default main program
            # to make it suitable for infering the `predict` var. The pruned
986
            # inference program is going to be saved in the "./infer_model/__model__"
F
fengjiayi 已提交
987
            # and parameters are going to be saved in separate files under folder
988
            # "./infer_model".
989 990

    """
M
minqiyang 已提交
991
    if isinstance(feeded_var_names, six.string_types):
F
fengjiayi 已提交
992
        feeded_var_names = [feeded_var_names]
X
Xin Pan 已提交
993
    elif export_for_deployment:
Q
Qiao Longfei 已提交
994
        if len(feeded_var_names) > 0:
995
            # TODO(paddle-dev): polish these code blocks
Q
Qiao Longfei 已提交
996
            if not (bool(feeded_var_names) and all(
M
minqiyang 已提交
997
                    isinstance(name, six.string_types)
998
                    for name in feeded_var_names)):
M
minqiyang 已提交
999
                raise ValueError("'feed_var_names' should be a list of str.")
F
fengjiayi 已提交
1000 1001

    if isinstance(target_vars, Variable):
F
fengjiayi 已提交
1002
        target_vars = [target_vars]
X
Xin Pan 已提交
1003
    elif export_for_deployment:
1004 1005
        if not (bool(target_vars) and
                all(isinstance(var, Variable) for var in target_vars)):
F
fengjiayi 已提交
1006 1007
            raise ValueError("'target_vars' should be a list of Variable.")

1008
    if main_program is None:
Y
Yu Yang 已提交
1009
        main_program = default_main_program()
D
dzhwinter 已提交
1010
        if main_program._is_mem_optimized:
D
dzhwinter 已提交
1011 1012 1013 1014 1015 1016
            warnings.warn(
                "save_inference_model must put before you call memory_optimize. \
                                            the memory_optimize will modify the original program, \
                                            is not suitable for saving inference model \
                                            we save the original program as inference model.",
                RuntimeWarning)
X
Xin Pan 已提交
1017

1018 1019 1020 1021 1022
    # fix the bug that the activation op's output as target will be pruned.
    # will affect the inference performance.
    # TODO(Superjomn) add an IR pass to remove 1-scale op.
    with program_guard(main_program):
        uniq_target_vars = []
F
flame 已提交
1023
        for i, var in enumerate(target_vars):
1024
            if isinstance(var, Variable):
F
flame 已提交
1025 1026 1027
                var = layers.scale(
                    var, 1., name="save_infer_model/scale_{}".format(i))
            uniq_target_vars.append(var)
1028
        target_vars = uniq_target_vars
F
flame 已提交
1029
    target_var_name_list = [var.name for var in target_vars]
1030

1031
    # when a pserver and a trainer running on the same machine, mkdir may conflict
L
lujun 已提交
1032
    save_dirname = dirname
1033
    try:
L
lujun 已提交
1034 1035
        save_dirname = os.path.normpath(dirname)
        os.makedirs(save_dirname)
1036 1037 1038 1039
    except OSError as e:
        if e.errno != errno.EEXIST:
            raise

X
Xin Pan 已提交
1040 1041 1042 1043
    if model_filename is not None:
        model_basename = os.path.basename(model_filename)
    else:
        model_basename = "__model__"
L
lujun 已提交
1044
    model_basename = os.path.join(save_dirname, model_basename)
1045

X
Xin Pan 已提交
1046 1047 1048 1049
    # When export_for_deployment is true, we modify the program online so that
    # it can only be loaded for inference directly. If it's false, the whole
    # original program and related meta are saved so that future usage can be
    # more flexible.
1050 1051 1052

    origin_program = main_program.clone()

X
Xin Pan 已提交
1053
    if export_for_deployment:
X
Xin Pan 已提交
1054 1055
        main_program = main_program.clone()
        global_block = main_program.global_block()
1056
        need_to_remove_op_index = []
X
Xin Pan 已提交
1057 1058 1059
        for i, op in enumerate(global_block.ops):
            op.desc.set_is_target(False)
            if op.type == "feed" or op.type == "fetch":
1060 1061 1062 1063 1064
                need_to_remove_op_index.append(i)

        for index in need_to_remove_op_index[::-1]:
            global_block._remove_op(index)

X
Xin Pan 已提交
1065
        main_program.desc.flush()
X
Xin Pan 已提交
1066

X
Xin Pan 已提交
1067 1068
        main_program = main_program._prune(targets=target_vars)
        main_program = main_program._inference_optimize(prune_read_op=True)
X
Xin Pan 已提交
1069 1070
        fetch_var_names = [v.name for v in target_vars]

X
Xin Pan 已提交
1071 1072 1073 1074 1075
        prepend_feed_ops(main_program, feeded_var_names)
        append_fetch_ops(main_program, fetch_var_names)

        with open(model_basename, "wb") as f:
            f.write(main_program.desc.serialize_to_string())
X
Xin Pan 已提交
1076 1077 1078
    else:
        # TODO(panyx0718): Save more information so that it can also be used
        # for training and more flexible post-processing.
X
Xin Pan 已提交
1079 1080
        with open(model_basename + ".main_program", "wb") as f:
            f.write(main_program.desc.serialize_to_string())
T
tangwei12 已提交
1081

T
tangwei12 已提交
1082 1083 1084 1085 1086 1087
    if program_only:
        warnings.warn(
            "save_inference_model specified the param `program_only` to True, It will not save params of Program."
        )
        return target_var_name_list

1088 1089
    main_program._copy_dist_param_info_from(origin_program)

X
fix  
Xin Pan 已提交
1090 1091
    if params_filename is not None:
        params_filename = os.path.basename(params_filename)
1092

L
lujun 已提交
1093
    save_persistables(executor, save_dirname, main_program, params_filename)
F
flame 已提交
1094
    return target_var_name_list
X
fix  
Xin Pan 已提交
1095

1096

1097 1098 1099
def load_inference_model(dirname,
                         executor,
                         model_filename=None,
T
tangwei12 已提交
1100 1101
                         params_filename=None,
                         pserver_endpoints=None):
1102
    """
1103 1104 1105 1106
    Load inference model from a directory. By this API, you can get the model
    structure(inference program) and model parameters. If you just want to load
    parameters of the pre-trained model, please use the `load_params` API.
    You can refer to :ref:`api_guide_model_save_reader_en` for more details.
1107

F
fengjiayi 已提交
1108 1109 1110 1111
    Args:
        dirname(str): The directory path
        executor(Executor): The executor to run for loading inference model.
        model_filename(str|None): The name of file to load inference program.
1112
                                  If it is None, the default filename
F
fengjiayi 已提交
1113 1114 1115
                                  '__model__' will be used.
                                  Default: None
        params_filename(str|None): The name of file to load all parameters.
1116 1117 1118
                                   It is only used for the case that all
                                   parameters were saved in a single binary
                                   file. If parameters were saved in separate
F
fengjiayi 已提交
1119
                                   files, set it as 'None'.
1120 1121 1122 1123
        pserver_endpoints(list|None): This only need by distributed inference.
                                    When use distributed look up table in training,
                                    We also need it in inference.The parameter is
                                    a list of pserver endpoints.
F
fengjiayi 已提交
1124 1125 1126

    Returns:
        tuple: The return of this function is a tuple with three elements:
1127 1128 1129 1130 1131
        (program, feed_target_names, fetch_targets). The `program` is a
        Program, it's the program for inference. The `feed_target_names` is
        a list of str, it contains Names of variables that need to feed
        data in the inference program. The `fetch_targets` is a list of
        Variable. It contains variables from which we can get inference
F
fengjiayi 已提交
1132 1133 1134 1135 1136 1137 1138 1139
        results.

    Raises:
        ValueError: If `dirname` is not a existing directory.

    Examples:
        .. code-block:: python

1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
            import paddle.fluid as fluid
            import numpy as np
            main_prog = fluid.Program()
            startup_prog = fluid.Program()
            with fluid.program_guard(main_prog, startup_prog):
                data = fluid.layers.data(name="img", shape=[64, 784], append_batch_size=False)
                w = fluid.layers.create_parameter(shape=[784, 200], dtype='float32')
                b = fluid.layers.create_parameter(shape=[200], dtype='float32')
                hidden_w = fluid.layers.matmul(x=data, y=w)
                hidden_b = fluid.layers.elementwise_add(hidden_w, b)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_prog)
F
fengjiayi 已提交
1153
            path = "./infer_model"
1154 1155 1156
            fluid.io.save_inference_model(dirname=path, feeded_var_names=['img'],
                         target_vars=[hidden_b], executor=exe, main_program=main_prog)
            tensor_img = np.array(np.random.random((1, 64, 784)), dtype=np.float32)
1157 1158
            [inference_program, feed_target_names, fetch_targets] = (
                fluid.io.load_inference_model(dirname=path, executor=exe))
F
fengjiayi 已提交
1159 1160 1161 1162
            results = exe.run(inference_program,
                          feed={feed_target_names[0]: tensor_img},
                          fetch_list=fetch_targets)

1163 1164
            # endpoints is your pserver endpoints list, the above is just an example
            endpoints = ["127.0.0.1:2023","127.0.0.1:2024"]
1165
            # if we need lookup table, we will use:
1166
            [dist_inference_program, dist_feed_target_names, dist_fetch_targets] = (
1167 1168
                fluid.io.load_inference_model(dirname=path,
                                              executor=exe,
1169
                                              pserver_endpoints=endpoints))
1170

1171
            # In this example, the inference program was saved in the
1172
            # "./infer_model/__model__" and parameters were saved in
1173
            # separate files in "./infer_model".
1174 1175
            # After getting inference program, feed target names and
            # fetch targets, we can use an Executor to run the inference
F
fengjiayi 已提交
1176
            # program to get the inference result.
1177
    """
L
lujun 已提交
1178 1179
    load_dirname = os.path.normpath(dirname)
    if not os.path.isdir(load_dirname):
1180 1181
        raise ValueError("There is no directory named '%s'", dirname)

1182 1183
    if model_filename is not None:
        model_filename = os.path.basename(model_filename)
1184
    else:
1185
        model_filename = "__model__"
L
lujun 已提交
1186
    model_filename = os.path.join(load_dirname, model_filename)
1187 1188 1189

    if params_filename is not None:
        params_filename = os.path.basename(params_filename)
1190

1191
    with open(model_filename, "rb") as f:
1192 1193
        program_desc_str = f.read()

1194
    program = Program.parse_from_string(program_desc_str)
X
Xin Pan 已提交
1195
    if not core._is_program_version_supported(program._version()):
X
version  
Xin Pan 已提交
1196 1197 1198
        raise ValueError("Unsupported program version: %d\n" %
                         program._version())
    # Binary data also need versioning.
L
lujun 已提交
1199
    load_persistables(executor, load_dirname, program, params_filename)
1200

T
tangwei12 已提交
1201
    if pserver_endpoints:
T
tangwei12 已提交
1202
        program = _endpoints_replacement(program, pserver_endpoints)
T
tangwei12 已提交
1203

1204 1205
    feed_target_names = program.desc.get_feed_target_names()
    fetch_target_names = program.desc.get_fetch_target_names()
1206 1207 1208 1209 1210
    fetch_targets = [
        program.global_block().var(name) for name in fetch_target_names
    ]

    return [program, feed_target_names, fetch_targets]
X
xuwei06 已提交
1211 1212


T
tangwei12 已提交
1213 1214 1215
def _endpoints_replacement(program, endpoints):
    ENDPOINT_MAP = "epmap"
    for op in program.global_block().ops:
T
tangwei12 已提交
1216 1217
        if op.has_attr(ENDPOINT_MAP):
            op.set_attr(ENDPOINT_MAP, endpoints)
T
fix  
tangwei12 已提交
1218
    program._sync_with_cpp()
T
tangwei12 已提交
1219
    return program
T
tangwei12 已提交
1220 1221


X
xuwei06 已提交
1222 1223
def get_parameter_value(para, executor):
    """
F
fengjiayi 已提交
1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
    Get the LoDTensor value of the given parameter.

    Args:
        para(Parameter): The parameter to get value from.
        executor(Executor): The executor to run for retrieving the value.

    Returns:
        numpy.array: The given parameter's values.

    Raises:
        AssertionError: If the `para` is not an instance of Parameter.
X
xuwei06 已提交
1235

F
fengjiayi 已提交
1236 1237
    Examples:
        .. code-block:: python
X
xuwei06 已提交
1238

1239
            import paddle.fluid as fluid
F
fengjiayi 已提交
1240 1241 1242
            exe = fluid.Executor(fluid.CPUPlace())
            param = fluid.default_main_program().global_block().var('fc.w')
            p = fluid.io.get_parameter_value(param, exe)
1243

X
xuwei06 已提交
1244
    """
X
xuwei06 已提交
1245 1246
    assert is_parameter(para)

X
xuwei06 已提交
1247 1248 1249 1250 1251 1252 1253 1254
    get_program = Program()
    block = get_program.global_block()
    new_var = _clone_var_in_block_(block, para)
    return executor.run(get_program, feed={}, fetch_list=[new_var])[0]


def get_parameter_value_by_name(name, executor, program=None):
    """
F
fengjiayi 已提交
1255
    Get the LoDTensor value of a certain parameter by its name.
X
xuwei06 已提交
1256

F
fengjiayi 已提交
1257 1258 1259 1260 1261 1262 1263
    Args:
        name(str): The parameter's name.
        executor(Executor): The executor to run for retrieving the value.
        program(Program | None): The program where to find the parameter.
                               If it's set to be None, the function will
                               try to find the parameter in the default
                               main program.
X
xuwei06 已提交
1264

F
fengjiayi 已提交
1265 1266
    Returns:
        numpy.array: The parameter's values.
1267

F
fengjiayi 已提交
1268 1269 1270 1271 1272
    Raises:
        TypeError: If given `name` is not an instance of basestring.
        TypeError: If the parameter with the given name doesn't exist.
        AssertionError: If there is a varibale named `name` in the
                        given program but it is not a Parameter.
1273

F
fengjiayi 已提交
1274 1275 1276
    Examples:
        .. code-block:: python

1277
            import paddle.fluid as fluid
F
fengjiayi 已提交
1278 1279
            exe = fluid.Executor(fluid.CPUPlace())
            p = fluid.io.get_parameter_value('fc.w', exe)
X
xuwei06 已提交
1280 1281
    """
    if program is None:
Y
Yu Yang 已提交
1282
        program = default_main_program()
X
xuwei06 已提交
1283 1284
    var = program.global_block().var(name)
    return get_parameter_value(var, executor)
1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361


def _save_persistable_nodes(executor, dirname, graph):
    """
    Save persistable nodes to the given directory by the executor.

    Args:
        executor(Executor): The executor to run for saving node values.
        dirname(str): The directory path.
        graph(IrGraph): All the required persistable nodes in the graph will be saved.
    """
    persistable_node_names = set()
    persistable_nodes = []
    all_persistable_nodes = graph.all_persistable_nodes()
    for node in all_persistable_nodes:
        name = cpt.to_text(node.name())
        if name not in persistable_node_names:
            persistable_node_names.add(name)
            persistable_nodes.append(node)
    program = Program()
    var_list = []
    for node in persistable_nodes:
        var_desc = node.var()
        if var_desc.type() == core.VarDesc.VarType.RAW or \
                var_desc.type() == core.VarDesc.VarType.READER:
            continue
        var = program.global_block().create_var(
            name=var_desc.name(),
            shape=var_desc.shape(),
            dtype=var_desc.dtype(),
            type=var_desc.type(),
            lod_level=var_desc.lod_level(),
            persistable=var_desc.persistable())
        var_list.append(var)
    save_vars(executor=executor, dirname=dirname, vars=var_list)


def _load_persistable_nodes(executor, dirname, graph):
    """
    Load persistable node values from the given directory by the executor.

    Args:
        executor(Executor): The executor to run for loading node values.
        dirname(str): The directory path.
        graph(IrGraph): All the required persistable nodes in the graph will be loaded.
    """
    persistable_node_names = set()
    persistable_nodes = []
    all_persistable_nodes = graph.all_persistable_nodes()
    for node in all_persistable_nodes:
        name = cpt.to_text(node.name())
        if name not in persistable_node_names:
            persistable_node_names.add(name)
            persistable_nodes.append(node)
    program = Program()
    var_list = []

    def _exist(var):
        return os.path.exists(os.path.join(dirname, var.name))

    for node in persistable_nodes:
        var_desc = node.var()
        if var_desc.type() == core.VarDesc.VarType.RAW or \
                var_desc.type() == core.VarDesc.VarType.READER:
            continue
        var = program.global_block().create_var(
            name=var_desc.name(),
            shape=var_desc.shape(),
            dtype=var_desc.dtype(),
            type=var_desc.type(),
            lod_level=var_desc.lod_level(),
            persistable=var_desc.persistable())
        if _exist(var):
            var_list.append(var)
        else:
            _logger.warn("Cannot find the var %s!!!" % (node.name()))
    load_vars(executor=executor, dirname=dirname, vars=var_list)