pybind.cc 32.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
C
chengduoZH 已提交
15 16
#include <algorithm>
#include <map>
S
sneaxiy 已提交
17
#include <memory>
C
chengduoZH 已提交
18 19 20 21 22
#include <mutex>  // NOLINT // for call_once
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
23

Y
Yi Wang 已提交
24 25 26
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/framework.pb.h"
27
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
28 29 30
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
31
#include "paddle/fluid/framework/op_registry.h"
Y
Yu Yang 已提交
32
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
33
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
34
#include "paddle/fluid/framework/reader.h"
Y
Yi Wang 已提交
35
#include "paddle/fluid/framework/selected_rows.h"
X
Xin Pan 已提交
36
#include "paddle/fluid/framework/version.h"
D
dzhwinter 已提交
37
#include "paddle/fluid/operators/activation_op.h"
S
sneaxiy 已提交
38
#include "paddle/fluid/operators/reader/lod_tensor_blocking_queue.h"
Y
Yi Wang 已提交
39
#include "paddle/fluid/platform/enforce.h"
40
#include "paddle/fluid/platform/init.h"
Y
Yi Wang 已提交
41 42 43 44
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
#include "paddle/fluid/pybind/const_value.h"
#include "paddle/fluid/pybind/exception.h"
45 46
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
Y
Yu Yang 已提交
47
#include "paddle/fluid/pybind/recordio.h"
Y
Yi Wang 已提交
48
#include "paddle/fluid/pybind/tensor_py.h"
Y
Yu Yang 已提交
49

50
#include "paddle/fluid/string/to_string.h"
51

D
Dong Zhihong 已提交
52
#ifdef PADDLE_WITH_CUDA
Y
Yi Wang 已提交
53 54 55
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
#include "paddle/fluid/platform/cuda_profiler.h"
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
56 57
#endif

M
minqiyang 已提交
58 59
#include "pybind11/stl.h"

60 61 62 63
DEFINE_bool(reader_queue_speed_test_mode, false,
            "If set true, the queue.pop will only get data from queue but not "
            "remove the data from queue for speed testing");

Q
Qiao Longfei 已提交
64 65 66
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);

67
namespace paddle {
68
namespace pybind {
69
bool IsCompiledWithCUDA() {
70
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
71 72 73 74 75 76
  return false;
#else
  return true;
#endif
}

Y
update  
Yancey1989 已提交
77
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
78
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
79 80 81 82 83 84
  return true;
#else
  return false;
#endif
}

85 86
PYBIND11_PLUGIN(core) {
  py::module m("core", "C++ core of PaddlePaddle");
87

88 89 90 91
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

92
  BindException(&m);
Y
Yu Yang 已提交
93

94 95 96
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
Y
yuyang18 已提交
97
      .def("_get_dims",
98
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
99
      .def("_set_dims",
Q
qijun 已提交
100
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
101
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
102
           })
Y
yuyang18 已提交
103
      .def("_set_layout",
D
dzhwinter 已提交
104 105 106
           [](Tensor &self, const std::string &layout) {
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
107
      .def("_alloc_float",
D
dzhwinter 已提交
108
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
109
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
110
           })
Y
yuyang18 已提交
111
      .def("_alloc_float",
Y
Yu Yang 已提交
112
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
113
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
114
           })
Y
yuyang18 已提交
115
      .def("_alloc_int",
Y
Yu Yang 已提交
116
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
117
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
118
           })
Y
yuyang18 已提交
119
      .def("_alloc_int",
D
dzhwinter 已提交
120
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
121
             self.mutable_data<int>(place);
Q
qijun 已提交
122
           })
Y
yuyang18 已提交
123
      .def("_alloc_int",
C
chengduoZH 已提交
124 125 126
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
127
      .def("_alloc_float",
C
chengduoZH 已提交
128 129 130
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<float>(place);
           })
Y
Yu Yang 已提交
131 132
      .def("set", PyCPUTensorSetFromArray<float>)
      .def("set", PyCPUTensorSetFromArray<int>)
133
      .def("set", PyCPUTensorSetFromArray<double>)
134
      .def("set", PyCPUTensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
135
      .def("set", PyCPUTensorSetFromArray<bool>)
136
      .def("set", PyCPUTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
137
      .def("set", PyCPUTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
138
      .def("set", PyCPUTensorSetFromArray<int8_t>)
139
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
140 141
      .def("set", PyCUDATensorSetFromArray<float>)
      .def("set", PyCUDATensorSetFromArray<int>)
142
      .def("set", PyCUDATensorSetFromArray<double>)
143
      .def("set", PyCUDATensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
144
      .def("set", PyCUDATensorSetFromArray<bool>)
145
      .def("set", PyCUDATensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
146
      .def("set", PyCUDATensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
147
      .def("set", PyCUDATensorSetFromArray<int8_t>)
C
chengduoZH 已提交
148 149 150 151 152 153
      .def("set", PyCUDAPinnedTensorSetFromArray<float>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int>)
      .def("set", PyCUDAPinnedTensorSetFromArray<double>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int64_t>)
      .def("set", PyCUDAPinnedTensorSetFromArray<bool>)
      .def("set", PyCUDAPinnedTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
154
      .def("set", PyCUDAPinnedTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
155
      .def("set", PyCUDAPinnedTensorSetFromArray<int8_t>)
Q
qijun 已提交
156
#endif
157
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
158 159 160 161 162
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
      .def("_dtype", [](Tensor &self) { return ToDataType(self.type()); });
Y
Yu Yang 已提交
163

164
  py::class_<LoDTensor, Tensor>(m, "LoDTensor")
165 166
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
167 168 169 170 171 172 173 174 175 176 177 178 179 180
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, -1),
                 "the provided recursive_sequence_lengths info is invalid");
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
181
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
182 183 184 185 186
      // We implement offset based LOD in C++ while we use length based with
      // Python API. So we changed set_lod to set_recursive_sequence_lengths to
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
187
      .def("set_lod",
188
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
189
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
190
             LoD new_lod;
191 192
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
193 194
             PADDLE_ENFORCE(CheckLoD(new_lod, vectorize(self.dims()).front()),
                            "the provided lod info is invalid");
195
             self.set_lod(new_lod);
D
dangqingqing 已提交
196
           })
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()),
                 "the provided recursive_sequence_lengths info is invalid");
             self.set_lod(new_offset_lod);
           })
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
           })
G
gongweibao 已提交
222
      // Set above comments of set_lod.
223 224 225 226 227 228 229 230 231 232 233 234 235
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
           })
      .def("has_valid_recursive_sequence_lengths", [](LoDTensor &self) -> bool {
        // Check that the lod info is valid and match the outermost
        // dimension of the LoDTensor data
        return CheckLoD(self.lod(), vectorize(self.dims()).front());
D
dangqingqing 已提交
236 237
      });

Q
qijun 已提交
238 239 240 241 242 243 244 245 246 247 248 249 250
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
251 252 253 254 255 256 257 258 259
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
260
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
261
      .def("rows", [](SelectedRows &self) {
262 263 264 265 266
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
267
      });
Q
qijun 已提交
268

269
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
270 271 272

All parameter, weight, gradient are variables in Paddle.
)DOC")
273
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
274
      .def("set_int",
275 276
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
277 278 279 280 281 282 283
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
284
      .def("get_tensor",
285 286
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
287 288
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
289 290 291
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
292 293 294 295 296
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
297 298 299
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
D
Dong Zhihong 已提交
300 301 302 303 304 305 306
#ifdef PADDLE_WITH_CUDA
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
#endif
Y
Refine  
Yu Yang 已提交
307 308 309 310 311
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
             PADDLE_ENFORCE(self.IsType<framework::ReaderHolder>());
             return self.GetMutable<framework::ReaderHolder>();
           },
Y
Yu Yang 已提交
312
           py::return_value_policy::reference);
313

Y
Refine  
Yu Yang 已提交
314
  py::class_<framework::ReaderHolder>(m, "Reader", "")
315
      .def("reset", &framework::ReaderHolder::ResetAll);
Y
Refine  
Yu Yang 已提交
316

S
sneaxiy 已提交
317 318 319 320
  using LoDTensorBlockingQueue =
      ::paddle::operators::reader::LoDTensorBlockingQueue;
  using LoDTensorBlockingQueueHolder =
      ::paddle::operators::reader::LoDTensorBlockingQueueHolder;
S
sneaxiy 已提交
321 322
  py::class_<LoDTensorBlockingQueue, std::shared_ptr<LoDTensorBlockingQueue>>(
      m, "LoDTensorBlockingQueue", "")
S
sneaxiy 已提交
323
      .def("push",
S
sneaxiy 已提交
324
           [](LoDTensorBlockingQueue &self,
S
sneaxiy 已提交
325
              const std::vector<framework::LoDTensor> &lod_tensor_vec) {
S
sneaxiy 已提交
326
             pybind11::gil_scoped_release release;
S
sneaxiy 已提交
327
             return self.Push(lod_tensor_vec);
S
sneaxiy 已提交
328
           })
S
sneaxiy 已提交
329 330 331 332
      .def("size", &LoDTensorBlockingQueue::Size)
      .def("capacity", &LoDTensorBlockingQueue::Cap)
      .def("close", &LoDTensorBlockingQueue::Close)
      .def("is_closed", &LoDTensorBlockingQueue::IsClosed);
S
sneaxiy 已提交
333

S
sneaxiy 已提交
334
  m.def("init_lod_tensor_blocking_queue",
S
sneaxiy 已提交
335
        [](Variable &var, size_t capacity,
S
sneaxiy 已提交
336
           const std::vector<std::vector<int64_t>> &shapes)
S
sneaxiy 已提交
337
            -> std::shared_ptr<LoDTensorBlockingQueue> {
S
sneaxiy 已提交
338 339 340 341 342 343
              std::vector<DDim> dims(shapes.size());
              std::transform(shapes.begin(), shapes.end(), dims.begin(),
                             [](const std::vector<int64_t> &shape) {
                               return make_ddim(shape);
                             });
              auto *holder = var.GetMutable<LoDTensorBlockingQueueHolder>();
344 345
              holder->InitOnce(capacity, dims,
                               FLAGS_reader_queue_speed_test_mode);
S
sneaxiy 已提交
346
              return holder->GetQueue();
S
sneaxiy 已提交
347
            },
S
sneaxiy 已提交
348
        py::return_value_policy::copy);
S
sneaxiy 已提交
349

350
  py::class_<Scope>(m, "Scope", "")
D
dongzhihong 已提交
351
      .def("var",
352
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
353
             return self.Var(name);
Y
Yu Yang 已提交
354
           },
355
           py::return_value_policy::reference)
356
      .def("find_var", &Scope::FindVar, py::return_value_policy::reference)
Y
Yu Yang 已提交
357
      .def(py::init<>())
358
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
359
           py::return_value_policy::reference)
Y
Yu Yang 已提交
360
      .def("drop_kids", &Scope::DropKids);
361

Y
Yu Yang 已提交
362 363
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
364 365
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
366 367 368 369 370 371 372 373 374 375
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
        PADDLE_ENFORCE(
            info.Proto().SerializeToString(&str),
            "Serialize OpProto Error. This could be a bug of Paddle.");
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
376 377
    return ret_values;
  });
378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
Y
Yu Yang 已提交
394
  m.def("prune", [](const ProgramDesc &origin,
395
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
396
    ProgramDesc prog_with_targets(origin);
397
    for (const auto &t : targets) {
398
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
399
    }
400
    proto::ProgramDesc pruned_desc;
401
    Prune(*prog_with_targets.Proto(), &pruned_desc);
Y
Yu Yang 已提交
402
    return new ProgramDesc(pruned_desc);
403
  });
404 405 406 407
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
408 409 410
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
411 412
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
413
  // clang-format off
Y
Yu Yang 已提交
414
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
415 416
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
417
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
418 419 420
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
D
dzhwinter 已提交
421
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
422
                      -> paddle::platform::DeviceContext* {
423
#ifndef PADDLE_WITH_CUDA
D
dzhwinter 已提交
424
                    PADDLE_THROW("CUDAPlace is not supported in CPU device.");
Q
qijun 已提交
425
#else
Q
qijun 已提交
426
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
427
#endif
C
chengduoZH 已提交
428 429 430 431 432 433 434 435 436 437 438
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_CUDA
                  PADDLE_THROW(
                        "CUDAPinnedPlace is not supported in CPU device.");
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
439 440 441 442
// clang-format on
#ifdef PADDLE_WITH_CUDA
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
D
dzhwinter 已提交
443
  py::class_<platform::CUDAPlace>(m, "CUDAPlace")
444
      .def(py::init<int>())
D
dzhwinter 已提交
445
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
446

447 448 449
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace")
      .def(py::init<>())
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
450

C
chengduoZH 已提交
451 452 453 454
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace")
      .def(py::init<>())
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

Y
Yu Yang 已提交
455 456 457 458 459 460 461
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
      .def("set_place",
D
dzhwinter 已提交
462
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
463
             self = gpu_place;
C
chengduoZH 已提交
464 465
           })
      .def("set_place", [](platform::Place &self,
C
chengduoZH 已提交
466 467
                           const platform::CUDAPinnedPlace &cuda_pinned_place) {
        self = cuda_pinned_place;
C
chengduoZH 已提交
468
      });
Y
Yu Yang 已提交
469

Y
Yu Yang 已提交
470 471 472
  py::class_<OperatorBase>(m, "Operator")
      .def_static("create",
                  [](py::bytes protobin) {
473
                    proto::OpDesc desc;
Y
Yu Yang 已提交
474 475 476 477 478
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
479
                    return OpRegistry::CreateOp(desc);
Y
Yu Yang 已提交
480
                  })
481
      .def("run",
482
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
483 484 485
              const platform::CPUPlace &place) { self.Run(scope, place); })
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
486
              const platform::CUDAPlace &place) { self.Run(scope, place); })
C
chengduoZH 已提交
487 488 489 490 491
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
492 493 494 495 496 497 498
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
499 500
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
501
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
502
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
503 504 505 506
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
507

F
fengjiayi 已提交
508
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
509
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
510
      .def("close", &Executor::Close)
S
sneaxiy 已提交
511 512 513 514 515
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
                     int block_id, bool create_local_scope, bool create_vars) {
        pybind11::gil_scoped_release release;
        self.Run(prog, scope, block_id, create_local_scope, create_vars);
      });
S
sneaxiy 已提交
516

D
dzhwinter 已提交
517
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
518
  m.def("init_glog", framework::InitGLOG);
X
Xin Pan 已提交
519 520
  m.def("init_devices",
        [](bool init_p2p) { framework::InitDevices(init_p2p); });
521

522
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
Y
update  
Yancey1989 已提交
523
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
524 525 526 527 528 529
#ifdef PADDLE_WITH_CUDA
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
530

531
  m.def("set_feed_variable", framework::SetFeedVariable);
Q
qijun 已提交
532
  m.def("get_fetch_variable", framework::GetFetchVariable);
Q
qijun 已提交
533

X
Xin Pan 已提交
534 535
  m.def("_is_program_version_supported", IsProgramVersionSupported);

536 537 538 539 540
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
  BindConstValue(&m);
Y
Yu Yang 已提交
541

Y
Yu Yang 已提交
542 543 544 545 546 547 548 549 550
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Y
Yu Yang 已提交
551
  py::class_<LoDTensorArray>(m, "LoDTensorArray")
S
sneaxiy 已提交
552 553
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
             PADDLE_ENFORCE_LT(i, self.size());
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
      .def("append", [](LoDTensorArray &self, const LoDTensor &t) {
        self.emplace_back();
        self.back().ShareDataWith(t);
        self.back().set_lod(t.lod());
      });

D
dzhwinter 已提交
570 571 572
  m.def("IsInplace",
        [](std::string op) -> bool { return operators::IsInplace(op); });

Y
Yu Yang 已提交
573
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
574
#ifdef PADDLE_WITH_CUDA
D
Dong Zhihong 已提交
575
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
576 577 578 579

  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
D
Dong Zhihong 已提交
580
#endif
Y
Yu Yang 已提交
581

582 583 584 585
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
586
      .value("kAll", platform::ProfilerState::kAll)
587 588 589 590 591 592 593 594 595 596 597 598 599
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
600
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
601
  m.def("reset_profiler", platform::ResetProfiler);
Y
Yu Yang 已提交
602

603 604 605 606 607 608 609
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
      .def("set_str", [](ir::Pass &self, const std::string &name,
                         const std::string &attr) {
        self.Set<std::string>(name, new std::string(attr));
      });

X
fix  
Xin Pan 已提交
610 611
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
612 613 614 615 616 617 618 619 620 621 622 623 624 625
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
626
  // -- python binds for parallel executor.
Y
yuyang18 已提交
627
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

    The available properties include:
        use_cuda (bool): Whether to use CUDA or not. Default True.
        num_threads (int): The number of threads that used to run the
            operators in ParallelExecutor. If it is not set, it will be
            set in ParallelExecutor according to the device count.
            Default 0.
        allow_op_delay (bool): Whether to delay the communication operators
            to run. Default False.
        num_iteration_per_drop_scope (int): how many iterations between
            the two dropping local scopes. Default 100.

        )DOC");

Y
yuyang18 已提交
645
  exec_strategy.def(py::init())
Y
yuyang18 已提交
646 647 648 649 650 651 652
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
          })
      .def_property(
653 654 655 656
          "use_cuda",
          [](const ExecutionStrategy &self) { return self.use_cuda_; },
          [](ExecutionStrategy &self, bool use_cuda) {
            self.use_cuda_ = use_cuda;
Y
yuyang18 已提交
657 658 659 660 661 662
          })
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
Y
yuyang18 已提交
663 664 665 666 667 668 669 670
          })
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
Y
yuyang18 已提交
671
          });
Y
yuyang18 已提交
672
  exec_strategy.def_property(
Y
yuyang18 已提交
673 674 675 676 677 678 679
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
680 681
      });

C
chengduo 已提交
682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

    The available properties include:
        reduce_strategy (str): There are two reduce strategies, 'AllReduce'
            and 'Reduce'. If you want that all parameters will be optimized
            on all devices, you can choose 'AllReduce'; if you choose
            'Reduce', all parameters will be evenly allocated to different
            devices for optimization, and then broadcast the optimized
            parameter to other devices. Default 'AllReduce'.
        gradient_scale_strategy (str): There are two ways of defining loss@grad,
            'CoeffNumDevice' and 'Customized'. By default, ParallelExecutor
            sets the loss@grad according to the number of devices. If you want
            to customize loss@grad, you can choose 'Customized'.
            Default 'CoeffNumDevice'.
        debug_graphviz_path (str): Whether to write the SSA Graph to file in the
            form of graphviz. It is useful for debugging. Default "".
)DOC");
Y
yuyang18 已提交
701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
            self.reduce_ = strategy;
          })
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
            self.gradient_scale_ = strategy;
Y
yuyang18 已提交
725 726 727 728 729 730
          })
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
            self.debug_graphviz_path_ = path;
F
fengjiayi 已提交
731 732 733 734
          })
      .def_property(
          "enable_data_balance",
          [](const BuildStrategy &self) { return self.enable_data_balance_; },
C
chengduo 已提交
735 736 737 738 739 740 741
          [](BuildStrategy &self, bool b) { self.enable_data_balance_ = b; })
      .def_property("fuse_elewise_add_act_ops",
                    [](const BuildStrategy &self) {
                      return self.fuse_elewise_add_act_ops_;
                    },
                    [](BuildStrategy &self, bool b) {
                      self.fuse_elewise_add_act_ops_ = b;
742
                    })
743
      .def("_create_passes_from_strategy",
X
fix  
Xin Pan 已提交
744 745 746
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
             return self.CreatePassesFromStrategy();
           });
Y
yuyang18 已提交
747 748 749 750

  pe.def(py::init<const std::vector<platform::Place> &,
                  const std::unordered_set<std::string> &,
                  const std::unordered_set<std::string> &, const ProgramDesc &,
Y
yuyang18 已提交
751
                  const std::string &, Scope *, std::vector<Scope *> &,
752 753
                  const ExecutionStrategy &, const BuildStrategy &, size_t,
                  size_t>())
Y
Yu Yang 已提交
754 755 756 757
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
758 759 760 761 762
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
763 764 765 766
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
S
sneaxiy 已提交
767 768 769 770 771 772
      .def("run", [](ParallelExecutor &self,
                     const std::vector<std::string> &fetch_tensors,
                     const std::string &fetched_var_name) {
        pybind11::gil_scoped_release release;
        self.Run(fetch_tensors, fetched_var_name);
      });
Y
Yu Yang 已提交
773

774
  BindRecordIOWriter(&m);
775
  return m.ptr();
L
Luo Tao 已提交
776
}
777
}  // namespace pybind
778
}  // namespace paddle