fusion_gru_op.cc 16.0 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

W
Wu Yi 已提交
15
#include "paddle/fluid/operators/fused/fusion_gru_op.h"
T
tensor-tang 已提交
16
#include <cstring>  // for memcpy
T
tensor-tang 已提交
17
#include <string>
T
tensor-tang 已提交
18 19
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/operators/math/fc_compute.h"
T
tensor-tang 已提交
20
#include "paddle/fluid/operators/math/jit_kernel.h"
T
tensor-tang 已提交
21 22 23 24 25 26
#include "paddle/fluid/operators/math/sequence2batch.h"

namespace paddle {
namespace operators {

void FusionGRUOp::InferShape(framework::InferShapeContext* ctx) const {
27 28
  PADDLE_ENFORCE(ctx->HasInput("X"), "Assert only one Input(X) of GRU.");
  PADDLE_ENFORCE(ctx->HasInput("WeightX"),
T
tensor-tang 已提交
29
                 "Assert only one Input(WeightX) of GRU.");
30
  PADDLE_ENFORCE(ctx->HasInput("WeightH"),
T
tensor-tang 已提交
31
                 "Assert only one Input(WeightH) of GRU.");
32 33
  PADDLE_ENFORCE(ctx->HasOutput("XX"), "Assert only one Output(XX) of GRU.");
  PADDLE_ENFORCE(ctx->HasOutput("Hidden"),
T
tensor-tang 已提交
34
                 "Assert only one Output(Hidden) of GRU.");
T
tensor-tang 已提交
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59

  auto x_dims = ctx->GetInputDim("X");
  PADDLE_ENFORCE_EQ(x_dims.size(), 2, "Input(X)'s rank must be 2.");

  auto wx_dims = ctx->GetInputDim("WeightX");
  PADDLE_ENFORCE_EQ(wx_dims.size(), 2,
                    "The rank of Input(WeightX) should be 2.");
  PADDLE_ENFORCE_EQ(wx_dims[0], x_dims[1],
                    "The first dimension of Input(WeightX) "
                    "should be %d.",
                    x_dims[1]);

  int frame_size = wx_dims[1] / 3;
  auto wh_dims = ctx->GetInputDim("WeightH");
  PADDLE_ENFORCE_EQ(wh_dims.size(), 2,
                    "The rank of Input(WeightH) should be 2.");
  PADDLE_ENFORCE_EQ(wh_dims[0], frame_size,
                    "The first dimension of Input(WeightH) "
                    "should be %d.",
                    frame_size);
  PADDLE_ENFORCE_EQ(wh_dims[1], 3 * frame_size,
                    "The second dimension of Input(WeightH) "
                    "should be 3 * %d.",
                    frame_size);

60
  if (ctx->HasInput("H0")) {
T
tensor-tang 已提交
61 62 63 64
    auto h0_dims = ctx->GetInputDim("H0");
    PADDLE_ENFORCE_EQ(h0_dims[1], frame_size,
                      "The width of H0 must be equal to frame_size.");
  }
65
  if (ctx->HasInput("Bias")) {
T
tensor-tang 已提交
66 67 68 69 70
    auto b_dims = ctx->GetInputDim("Bias");
    PADDLE_ENFORCE_EQ(b_dims.size(), 2, "The rank of Input(Bias) should be 2.");
    PADDLE_ENFORCE_EQ(b_dims[0], 1,
                      "The first dimension of Input(Bias) should be 1.");
    PADDLE_ENFORCE_EQ(b_dims[1], frame_size * 3,
T
tensor-tang 已提交
71 72
                      "The shape of Bias must be [1, frame_size * 3].");
  }
T
tensor-tang 已提交
73 74 75
  framework::DDim out_dims({x_dims[0], frame_size});
  ctx->SetOutputDim("Hidden", out_dims);
  ctx->ShareLoD("X", "Hidden");
T
tensor-tang 已提交
76
  int xx_width;
T
tensor-tang 已提交
77
  if (ctx->Attrs().Get<bool>("use_seq")) {
T
tensor-tang 已提交
78 79 80
    xx_width = wx_dims[1];
  } else {
    xx_width = x_dims[1] > wx_dims[1] ? wx_dims[1] : x_dims[1];
81
    PADDLE_ENFORCE(ctx->HasOutput("ReorderedH0"),
T
tensor-tang 已提交
82
                   "Assert only one Output(ReorderedH0) of GRU.");
83
    PADDLE_ENFORCE(ctx->HasOutput("BatchedInput"),
T
tensor-tang 已提交
84
                   "Assert only one Output(BatchedInput) of GRU.");
85
    PADDLE_ENFORCE(ctx->HasOutput("BatchedOut"),
T
tensor-tang 已提交
86
                   "Assert only one Output(BatchedOut) of GRU.");
T
tensor-tang 已提交
87 88
    ctx->SetOutputDim("BatchedInput", {x_dims[0], wx_dims[1]});
    ctx->SetOutputDim("BatchedOut", out_dims);
T
tensor-tang 已提交
89
  }
T
tensor-tang 已提交
90 91
  ctx->SetOutputDim("XX", {x_dims[0], xx_width});
  ctx->ShareLoD("X", "XX");
T
tensor-tang 已提交
92 93 94 95 96 97 98 99 100 101
}

framework::OpKernelType FusionGRUOp::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
  return framework::OpKernelType(
      framework::ToDataType(ctx.Input<framework::LoDTensor>("X")->type()),
      ctx.device_context());
}

void FusionGRUOpMaker::Make() {
T
tensor-tang 已提交
102 103
  AddInput("X",
           "(LoDTensor) the input is a LodTensor, which support "
T
tensor-tang 已提交
104
           "variable-time length input sequence. The underlying tensor in "
T
tensor-tang 已提交
105 106
           "this LoDTensor is a matrix with shape (T X M), where T is the "
           "total time steps in this mini-batch, M is the dim size of x.");
T
tensor-tang 已提交
107 108 109 110 111
  AddInput("H0",
           "(Tensor, optional) The initial hidden state is an optional "
           "input. This is a tensor with shape (N x D), where N is the "
           "batch size, D is the hidden size.")
      .AsDispensable();
T
tensor-tang 已提交
112 113 114 115
  AddInput("WeightX",
           "(Tensor) The FC weight with shape (M x 3D),"
           "where M is the dim size of x, D is the hidden size. ");
  AddInput("WeightH",
T
tensor-tang 已提交
116 117 118 119 120
           "(Tensor) (D x 3D) Same as GRUOp, where D is the hidden size. "
           "This weight is not exactly D x 3D as: {W_update, W_reset, W_state}"
           "Acutally they are D x 2D and D x D two part weights."
           "{W_update, W_reset; W_state}"
           "{D x (D + D); D x D}");
T
tensor-tang 已提交
121
  AddInput("Bias",
T
tensor-tang 已提交
122 123 124
           "(Tensor, optional) (1 x 3D)."
           "Almost same as GRUOp."
           "Note: if have FC bias it should be added on this bias.")
T
tensor-tang 已提交
125
      .AsDispensable();
T
tensor-tang 已提交
126 127
  AddOutput("ReorderedH0", "(Tensor) (N x D), which N is the min-batch size.")
      .AsIntermediate();
T
tensor-tang 已提交
128
  AddOutput("XX",
T
tensor-tang 已提交
129
            "(LoDTensor) the result after X * WeightX (size is T x 3D)"
T
tensor-tang 已提交
130 131 132
            " or batched_X (size is T x M), this will be automatically chosen,"
            " where T is the total time steps in this mini-batch,"
            " D is the hidden size, M is the dim size of x input.")
T
tensor-tang 已提交
133
      .AsIntermediate();
T
tensor-tang 已提交
134 135 136 137
  AddOutput("BatchedInput",
            "(LoDTensor) This is the batched result of input X"
            "or the batched result after fc, shape (T x 3D)")
      .AsIntermediate();
T
tensor-tang 已提交
138
  AddOutput("BatchedOut", "(LoDTensor) (T X D) save batched hidden.")
T
tensor-tang 已提交
139
      .AsIntermediate();
T
tensor-tang 已提交
140
  AddOutput("Hidden", "(LoDTensor) (T x D) Same as GRUOp");
T
tensor-tang 已提交
141 142 143 144 145 146 147 148 149 150 151 152 153
  AddAttr<std::string>("activation",
                       "(string, default tanh) "
                       "The activation type used for output candidate {h}_t.")
      .SetDefault("tanh");
  AddAttr<std::string>(
      "gate_activation",
      "(string, default sigmoid) "
      "The activation type used in update gate and reset gate.")
      .SetDefault("sigmoid");
  AddAttr<bool>("is_reverse",
                "(bool, defalut: False) "
                "whether to compute reversed GRU.")
      .SetDefault(false);
T
tensor-tang 已提交
154 155 156 157
  AddAttr<bool>("use_seq",
                "(bool, defalut: True) "
                "whether to use seq mode to compute GRU.")
      .SetDefault(true);
T
tensor-tang 已提交
158 159 160 161 162 163 164
  AddComment(R"DOC(
The Fusion complete GRU Operator.
This operator fuse the fully-connected operator into GRU, 
more details can refer to GRU op.
)DOC");
}

T
tensor-tang 已提交
165
template <typename T>
T
tensor-tang 已提交
166 167
class FusionGRUKernel : public framework::OpKernel<T> {
 public:
T
tensor-tang 已提交
168
  void Compute(const framework::ExecutionContext& ctx) const override {
T
tensor-tang 已提交
169
    if (ctx.Attr<bool>("use_seq")) {
T
tensor-tang 已提交
170 171 172 173 174 175
      SeqCompute(ctx);
    } else {
      BatchCompute(ctx);
    }
  }

T
tensor-tang 已提交
176 177 178 179 180 181 182 183 184 185
#define INIT_BASE_DEFINES                  \
  auto* x = ctx.Input<LoDTensor>("X");     \
  auto* wh = ctx.Input<Tensor>("WeightH"); \
  auto* xx = ctx.Output<LoDTensor>("XX");  \
  auto x_lod = x->lod();                   \
  auto x_dims = x->dims();   /* T x M*/    \
  auto wh_dims = wh->dims(); /* D x 3D*/   \
  const int total_T = x_dims[0];           \
  const int D3 = wh_dims[1]

186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
#define INIT_OTHER_DEFINES                                         \
  auto* h0 = ctx.Input<Tensor>("H0");                              \
  auto* wx = ctx.Input<Tensor>("WeightX");                         \
  auto* bias = ctx.Input<Tensor>("Bias");                          \
  auto* hidden_out = ctx.Output<LoDTensor>("Hidden");              \
  bool is_reverse = ctx.Attr<bool>("is_reverse");                  \
  const int M = x_dims[1];                                         \
  const int D = wh_dims[0];                                        \
  const int D2 = D * 2;                                            \
  const math::jitkernel::gru_attr_t attr(                          \
      D, ctx.Attr<std::string>("gate_activation"),                 \
      ctx.Attr<std::string>("activation"));                        \
  math::jitkernel::gru_t one_step;                                 \
  const auto& ker =                                                \
      math::jitkernel::KernelPool::Instance()                      \
          .template Get<math::jitkernel::GRUKernel<T>,             \
                        const math::jitkernel::gru_attr_t&>(attr); \
  const T* x_data = x->data<T>();                                  \
  const T* wx_data = wx->data<T>();                                \
  const T* wh_data = wh->data<T>();                                \
  auto place = ctx.GetPlace();                                     \
T
tensor-tang 已提交
207
  T* xx_data = xx->mutable_data<T>(place)
T
tensor-tang 已提交
208

T
tensor-tang 已提交
209 210
  void SeqCompute(const framework::ExecutionContext& ctx) const {
    using DeviceContext = paddle::platform::CPUDeviceContext;
T
tensor-tang 已提交
211 212
    INIT_BASE_DEFINES;
    INIT_OTHER_DEFINES;
T
tensor-tang 已提交
213
    const int N = x_lod[0].size() - 1;
T
tensor-tang 已提交
214
    const T* h0_data = h0 ? h0->data<T>() : nullptr;
T
tensor-tang 已提交
215
    const T* wh_state_data = wh_data + D * D2;
T
tensor-tang 已提交
216
    T* hidden_out_data = hidden_out->mutable_data<T>(place);
T
tensor-tang 已提交
217 218
    auto blas = math::GetBlas<DeviceContext, T>(ctx);
    math::FCCompute<DeviceContext, T>(blas, total_T, D3, M, x_data, wx_data,
T
tensor-tang 已提交
219 220
                                      xx_data,
                                      bias ? bias->data<T>() : nullptr);
T
tensor-tang 已提交
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237

    int xx_offset = D3;
    int gate_offset = D;
    if (is_reverse) {
      const int offset = (total_T - 1) * D;
      xx_data = xx_data + offset * 3;
      hidden_out_data = hidden_out_data + offset;
      xx_offset = -D3;
      gate_offset = -D;
    }
    auto move_step = [&]() {
      xx_data = xx_data + xx_offset;
      hidden_out_data = hidden_out_data + gate_offset;
    };
    for (int i = 0; i < N; ++i) {
      int bid = is_reverse ? N - 1 - i : i;
      int seq_len = x_lod[0][bid + 1] - x_lod[0][bid];
T
tensor-tang 已提交
238
      const T* prev_hidden_data = nullptr;
T
tensor-tang 已提交
239 240 241 242
      int tstart = 0;
      if (h0_data) {
        prev_hidden_data = h0_data + bid * D;
      } else {
243 244 245
        one_step.gates = xx_data;
        one_step.ht = hidden_out_data;
        ker->ComputeH1(&one_step, &attr);
T
tensor-tang 已提交
246 247 248 249 250 251 252 253 254
        prev_hidden_data = hidden_out_data;
        tstart = 1;
        move_step();
      }
      for (int step = tstart; step < seq_len; ++step) {
        // gemm prev * (Wu + Wr)
        blas.GEMM(CblasNoTrans, CblasNoTrans, 1, D2, D, static_cast<T>(1),
                  prev_hidden_data, D, wh_data, D2, static_cast<T>(1), xx_data,
                  D3);
255 256 257 258
        one_step.gates = xx_data;
        one_step.ht_1 = prev_hidden_data;
        one_step.ht = hidden_out_data;
        ker->ComputeHtPart1(&one_step, &attr);
T
tensor-tang 已提交
259 260 261 262
        // gemm rt * Ws
        blas.GEMM(CblasNoTrans, CblasNoTrans, 1, D, D, static_cast<T>(1),
                  hidden_out_data, D, wh_state_data, D, static_cast<T>(1),
                  xx_data + D2, D3);
263
        ker->ComputeHtPart2(&one_step, &attr);
T
tensor-tang 已提交
264 265 266 267 268 269 270 271
        // save prev
        prev_hidden_data = hidden_out_data;
        move_step();
      }
    }
  }

  void BatchCompute(const framework::ExecutionContext& ctx) const {
T
tensor-tang 已提交
272
    using DeviceContext = paddle::platform::CPUDeviceContext;
T
tensor-tang 已提交
273 274
    INIT_BASE_DEFINES;
    if (x_lod[0].size() == 2) {
275
      xx->Resize({total_T, D3});
T
tensor-tang 已提交
276 277 278
      SeqCompute(ctx);
      return;
    }
T
tensor-tang 已提交
279
    INIT_OTHER_DEFINES;
T
tensor-tang 已提交
280 281 282
    auto* reordered_h0 = ctx.Output<Tensor>("ReorderedH0");
    auto* batched_input = ctx.Output<LoDTensor>("BatchedInput");
    auto* batched_out = ctx.Output<LoDTensor>("BatchedOut");
T
tensor-tang 已提交
283 284 285
    T* batched_input_data = batched_input->mutable_data<T>(place);
    T* batched_out_data = batched_out->mutable_data<T>(place);
    hidden_out->mutable_data<T>(place);
T
tensor-tang 已提交
286 287 288
    auto& dev_ctx = ctx.template device_context<DeviceContext>();
    auto blas = math::GetBlas<DeviceContext, T>(dev_ctx);
    math::LoDTensor2BatchFunctor<DeviceContext, T> to_batch;
T
tensor-tang 已提交
289 290 291 292
    if (M > D3) {
      math::FCCompute<DeviceContext, T>(blas, total_T, D3, M, x_data, wx_data,
                                        xx_data,
                                        bias ? bias->data<T>() : nullptr);
T
tensor-tang 已提交
293
      to_batch(dev_ctx, *xx, batched_input, true, is_reverse);
T
tensor-tang 已提交
294 295
    } else {
      to_batch(dev_ctx, *x, xx, true, is_reverse);
T
tensor-tang 已提交
296
      batched_input->set_lod(xx->lod());
T
tensor-tang 已提交
297 298 299
      math::FCCompute<DeviceContext, T>(blas, total_T, D3, M, xx_data, wx_data,
                                        batched_input_data,
                                        bias ? bias->data<T>() : nullptr);
T
tensor-tang 已提交
300 301
    }

T
tensor-tang 已提交
302 303 304 305
    auto batched_lod = batched_input->lod();
    const auto& seq_order = batched_lod[2];
    const int max_bs = seq_order.size();
    reordered_h0->Resize({max_bs, D});
T
tensor-tang 已提交
306

T
tensor-tang 已提交
307
    int tstart = 0;
T
tensor-tang 已提交
308
    T* prev_hidden_data = nullptr;
T
tensor-tang 已提交
309
    if (h0) {
T
tensor-tang 已提交
310
      // reorder h0
T
tensor-tang 已提交
311
      T* reordered_h0_data = reordered_h0->mutable_data<T>(place);
T
tensor-tang 已提交
312 313 314 315 316 317 318
      const T* h0_data = h0->data<T>();
      prev_hidden_data = reordered_h0_data;
      size_t sz = sizeof(T) * D;
      for (int i = 0; i < max_bs; ++i) {
        std::memcpy(reordered_h0_data, h0_data + seq_order[i] * D, sz);
        reordered_h0_data += D;
      }
T
tensor-tang 已提交
319
    } else {
T
tensor-tang 已提交
320 321 322 323 324
      // compute without h0
      T* cur_in_data = batched_input_data;
      T* cur_out_data = batched_out_data;
      // W: {W_update, W_reset; W_state}
      for (int i = 0; i < max_bs; ++i) {
325 326 327
        one_step.gates = cur_in_data;
        one_step.ht = cur_out_data;
        ker->ComputeH1(&one_step, &attr);
T
tensor-tang 已提交
328 329 330 331 332 333
        // add offset
        cur_in_data += D3;
        cur_out_data += D;
      }
      tstart = 1;
      prev_hidden_data = batched_out_data;
T
tensor-tang 已提交
334
    }
T
tensor-tang 已提交
335 336 337 338 339 340 341 342 343 344 345 346 347 348
    // Then start from next
    const T* wh_state_data = wh_data + D * D2;
    const auto& batch_starts = batched_lod[0];
    const int max_seq_len = batch_starts.size() - 1;
    batched_input_data = batched_input_data + tstart * max_bs * D3;
    batched_out_data = batched_out_data + tstart * max_bs * D;
    for (int step = tstart; step < max_seq_len; ++step) {
      const int cur_bs = batch_starts[step + 1] - batch_starts[step];
      // gemm prev * (Wu + Wr)
      blas.GEMM(CblasNoTrans, CblasNoTrans, cur_bs, D2, D, static_cast<T>(1),
                prev_hidden_data, D, wh_data, D2, static_cast<T>(1),
                batched_input_data, D3);

      T* cur_batched_data = batched_input_data;
349
      T* cur_out_data = batched_out_data;
T
tensor-tang 已提交
350 351
      T* cur_prev_hidden_data = prev_hidden_data;
      for (int i = 0; i < cur_bs; ++i) {
352 353 354 355 356
        one_step.gates = cur_batched_data;
        one_step.ht_1 = cur_prev_hidden_data;
        one_step.ht = cur_out_data;
        ker->ComputeHtPart1(&one_step, &attr);

T
tensor-tang 已提交
357 358
        cur_batched_data += D3;
        cur_prev_hidden_data += D;
359
        cur_out_data += D;
T
tensor-tang 已提交
360 361
      }

T
tensor-tang 已提交
362
      cur_batched_data = batched_input_data;
363
      cur_out_data = batched_out_data;
T
tensor-tang 已提交
364
      blas.GEMM(CblasNoTrans, CblasNoTrans, cur_bs, D, D, static_cast<T>(1),
365
                cur_out_data, D, wh_state_data, D, static_cast<T>(1),
T
tensor-tang 已提交
366 367 368 369
                cur_batched_data + D2, D3);

      cur_prev_hidden_data = prev_hidden_data;
      for (int i = 0; i < cur_bs; ++i) {
370 371 372 373
        one_step.gates = cur_batched_data;
        one_step.ht_1 = cur_prev_hidden_data;
        one_step.ht = cur_out_data;
        ker->ComputeHtPart2(&one_step, &attr);
T
tensor-tang 已提交
374 375 376
        cur_batched_data += D3;
        cur_prev_hidden_data += D;
        cur_out_data += D;
T
tensor-tang 已提交
377
      }
T
tensor-tang 已提交
378 379 380
      prev_hidden_data = batched_out_data;
      batched_out_data = cur_out_data;
      batched_input_data = cur_batched_data;
T
tensor-tang 已提交
381
    }
T
tensor-tang 已提交
382

T
tensor-tang 已提交
383
    math::Batch2LoDTensorFunctor<DeviceContext, T> to_seq;
T
tensor-tang 已提交
384 385
    batched_out->set_lod(batched_lod);
    to_seq(dev_ctx, *batched_out, hidden_out);
T
tensor-tang 已提交
386
  }
T
tensor-tang 已提交
387 388
#undef INIT_OTHER_DEFINES
#undef INIT_BASE_DEFINES
T
tensor-tang 已提交
389 390 391 392 393 394 395 396
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(fusion_gru, ops::FusionGRUOp, ops::FusionGRUOpMaker,
                  paddle::framework::DefaultGradOpDescMaker<true>);
T
tensor-tang 已提交
397 398
REGISTER_OP_CPU_KERNEL(fusion_gru, ops::FusionGRUKernel<float>,
                       ops::FusionGRUKernel<double>);