fp16_utils.py 14.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

from ... import core
from ... import layers
from ... import framework


def append_cast_op(i, o, prog):
    """
    Append a cast op in a given Program to cast input `i` to data type `o.dtype`.

    Args:
        i (Variable): The input Variable.
        o (Variable): The output Variable.
        prog (Program): The Program to append cast op.
    """
    prog.global_block().append_op(
        type="cast",
        inputs={"X": i},
        outputs={"Out": o},
        attrs={"in_dtype": i.dtype,
               "out_dtype": o.dtype})


def copy_to_master_param(p, block):
    """
    New a master parameter for the input parameter, and they two share the same
    attributes except the data type.

    Args:
        p(Parameter): The input parameter in float16.
        block(Program): The block in which the parameter is.
    """
    v = block.vars.get(p.name, None)
    if v is None:
        raise ValueError("no param name %s found!" % p.name)
    new_p = framework.Parameter(
        block=block,
        shape=v.shape,
        dtype=core.VarDesc.VarType.FP32,
        type=v.type,
        lod_level=v.lod_level,
        stop_gradient=p.stop_gradient,
        trainable=p.trainable,
        optimize_attr=p.optimize_attr,
        regularizer=p.regularizer,
        gradient_clip_attr=p.gradient_clip_attr,
        error_clip=p.error_clip,
        name=v.name + ".master")
    return new_p


def create_master_params_grads(params_grads, main_prog, startup_prog,
                               loss_scaling):
    """ 
    Create master parameters and gradients in float32 from params and grads 
    in float16.

    Args:
        params_grads (list): A list of tuple (parameter, gradient) in float32.
        main_prog (Program): The main program for training.
        startup_prog (Program): The startup program to initialize all parameters.
        loss_scaling (float): The factor to scale loss and gradients.

    Returns:
        A list of master parameters and gradients. 
    """
    master_params_grads = []
    with main_prog._backward_role_guard():
        for p, g in params_grads:
            # create master parameters
            master_param = copy_to_master_param(p, main_prog.global_block())
            startup_master_param = startup_prog.global_block()._clone_variable(
                master_param)
            startup_p = startup_prog.global_block().var(p.name)
            # fp16 -> fp32
            append_cast_op(startup_p, startup_master_param, startup_prog)
            # cast fp16 gradients to fp32 before apply gradients
            if g.name.find("batch_norm") > -1:
J
Jie Fang 已提交
94
                scaled_g = g / loss_scaling
95 96 97
                master_params_grads.append([p, scaled_g])
                continue
            master_grad = layers.cast(x=g, dtype="float32")
J
Jie Fang 已提交
98
            master_grad = master_grad / loss_scaling
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
            master_params_grads.append([master_param, master_grad])

    return master_params_grads


def master_param_to_train_param(master_params_grads, params_grads, main_prog):
    """ 
    Convert master master parameters and gradients in float32 to parameters and 
    gradients in float16 for forward computation.

    Args:
        master_params_grads (list): A list of master parameters and gradients in 
                                   float32.
        params_grads (list): A list of parameters and gradients in float16.
        main_prog (list): The main program for execution.
    """
    for idx, m_p_g in enumerate(master_params_grads):
        train_p, _ = params_grads[idx]
        if train_p.name.find("batch_norm") > -1:
            continue
        with main_prog._optimized_guard([m_p_g[0], m_p_g[1]]):
            # fp32 -> fp16
            append_cast_op(m_p_g[0], train_p, main_prog)
J
Jie Fang 已提交
122 123


124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
def _rename_arg(op, old_name, new_name):
    """
    If an op has old_name input and output, rename these input 
    args new_name.

    Args:
        op (Operator): Current operator.
        old_name (str): The old name of input args.
        new_name (str): The new name of input args.
    """
    op_desc = op.desc
    if isinstance(op_desc, tuple):
        op_desc = op_desc[0]
    op_desc._rename_input(old_name, new_name)
    op_desc._rename_output(old_name, new_name)


def _dtype_to_str(dtype):
    """
    Convert specific variable type to its corresponding string.

    Args:
        dtype (VarType): Variable type.
    """
    if dtype == core.VarDesc.VarType.FP16:
        return 'fp16'
    else:
        return 'fp32'


def _insert_cast_op(block, op, idx, src_dtype, dest_dtype):
    """
    Insert cast op and rename args of input and output.

    Args:
        block (Program): The block in which the operator is.
        op (Operator): The operator to insert cast op.
        idx (int): The index of current operator.
        src_dtype (VarType): The input variable dtype of cast op.
        desr_dtype (VarType): The output variable dtype of cast op.

    Returns:
        num_cast_op (int): The number of cast ops that have been inserted.
    """
    num_cast_ops = 0
    valid_types = [
        core.VarDesc.VarType.LOD_TENSOR, core.VarDesc.VarType.SELECTED_ROWS,
        core.VarDesc.VarType.LOD_TENSOR_ARRAY
    ]
    for in_name in op.input_names:
        for in_var_name in op.input(in_name):
            in_var = block.var(in_var_name)
            if in_var.type not in valid_types:
                continue
            if in_var.dtype == src_dtype:
                out_var = block.create_var(
                    name=in_var.name + \
                            '.cast_' + _dtype_to_str(dest_dtype),
                    dtype=dest_dtype,
                    persistable=False,
                    stop_gradient=False)
                block._insert_op(
                    idx,
                    type="cast",
                    inputs={"X": in_var},
                    outputs={"Out": out_var},
                    attrs={
                        "in_dtype": in_var.dtype,
                        "out_dtype": out_var.dtype
                    })
                num_cast_ops += 1
                _rename_arg(op, in_var.name, out_var.name)
            else:
                if op.has_attr('in_dtype'):
                    op._set_attr('in_dtype', dest_dtype)
    if src_dtype == core.VarDesc.VarType.FP16:
        for out_name in op.output_names:
            for out_var_name in op.output(out_name):
                out_var = block.var(out_var_name)
                if out_var.type not in valid_types:
                    continue
                if out_var.dtype == core.VarDesc.VarType.FP16:
                    out_var.desc.set_dtype(core.VarDesc.VarType.FP32)
                    if op.has_attr('out_dtype'):
                        op._set_attr('out_dtype', core.VarDesc.VarType.FP32)
    return num_cast_ops


def find_true_prev_op(ops, var_name):
    for op in ops:
        for out_name in op.output_names:
            for out_var_name in op.output(out_name):
                if out_var_name == var_name:
                    return op


220
def rewrite_program(main_prog, amp_lists):
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
    """
    Traverse all ops in current block and insert cast op according to 
    which set current op belongs to.

    1. When an op belongs to the black list, add it to black set
    2. When an op belongs to the white list, add it to white set
    3. When an op belongs to the gray list. If one 
       of its inputs is the output of black set op or black list op, 
       add it to black set. If all of its previous ops are not black 
       op and one of its inputs is the output of white set op or 
       white list op, add it to white set.
    4. When an op isn't in the lists, add it to black op set.
    5. Add necessary cast ops to make sure that black set op will be 
       computed in fp32 mode, while white set op will be computed in 
       fp16 mode.

    Args:
        main_prog (Program): The main program for training.
    """
    block = main_prog.global_block()
    ops = block.ops
    white_op_set = set()
    black_op_set = set()
    for i in range(len(ops)):
        op = ops[i]
246
        if op.type in amp_lists.black_list:
247
            black_op_set.add(op)
248
        elif op.type in amp_lists.white_list:
249
            white_op_set.add(op)
250
        elif op.type in amp_lists.gray_list:
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
            is_black_op = False
            is_white_op = False
            for in_name in op.input_names:
                # if this op has inputs
                if in_name:
                    for in_var_name in op.input(in_name):
                        in_var = block.var(in_var_name)
                        # this in_var isn't the output of other op
                        if in_var.op is None:
                            continue
                        if in_var.op is op:
                            prev_op = find_true_prev_op(ops, in_var_name)
                        else:
                            prev_op = in_var.op
                        # if it's one of inputs
                        if prev_op in black_op_set or \
267
                                prev_op.type in amp_lists.black_list:
268 269
                            is_black_op = True
                        if prev_op in white_op_set or \
270
                                prev_op.type in amp_lists.white_list:
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
                            is_white_op = True
            if is_black_op:
                black_op_set.add(op)
            elif is_white_op:
                white_op_set.add(op)
            else:
                pass
        else:
            # For numerical safe, we apply fp32 computation on ops that
            # are not determined which list they should stay.
            black_op_set.add(op)

    idx = 0
    while idx < len(ops):
        op = ops[idx]
        num_cast_ops = 0
        if op in black_op_set:
            num_cast_ops = _insert_cast_op(block, op, idx,
                                           core.VarDesc.VarType.FP16,
                                           core.VarDesc.VarType.FP32)
        elif op in white_op_set:
            num_cast_ops = _insert_cast_op(block, op, idx,
                                           core.VarDesc.VarType.FP32,
                                           core.VarDesc.VarType.FP16)
        else:
            pass

        idx += num_cast_ops + 1


J
Jie Fang 已提交
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
def update_loss_scaling(is_overall_finite, prev_loss_scaling, num_good_steps,
                        num_bad_steps, incr_every_n_steps,
                        decr_every_n_nan_or_inf, incr_ratio, decr_ratio):
    """
    Update loss scaling according to overall gradients. If all gradients is 
    finite after incr_every_n_steps, loss scaling will increase by incr_ratio. 
    Otherwisw, loss scaling will decrease by decr_ratio after 
    decr_every_n_nan_or_inf steps and each step some gradients are infinite.

    Args:
        is_overall_finite (Variable): A boolean variable indicates whether 
                                     all gradients are finite.
        prev_loss_scaling (Variable): Previous loss scaling.
        num_good_steps (Variable): A variable accumulates good steps in which 
                                   all gradients are finite.
        num_bad_steps (Variable): A variable accumulates bad steps in which 
                                  some gradients are infinite.
        incr_every_n_steps (Variable): A variable represents increasing loss 
                                       scaling every n consecutive steps with 
                                       finite gradients.
        decr_every_n_nan_or_inf (Variable): A variable represents decreasing 
                                            loss scaling every n accumulated 
                                            steps with nan or inf gradients.
        incr_ratio(float): The multiplier to use when increasing the loss 
                           scaling.
        decr_ratio(float): The less-than-one-multiplier to use when decreasing 
                           loss scaling.
    """
    zero_steps = layers.fill_constant(shape=[1], dtype='int32', value=0)
    with layers.Switch() as switch:
        with switch.case(is_overall_finite):
            should_incr_loss_scaling = layers.less_than(incr_every_n_steps,
                                                        num_good_steps + 1)
            with layers.Switch() as switch1:
                with switch1.case(should_incr_loss_scaling):
                    new_loss_scaling = prev_loss_scaling * incr_ratio
                    loss_scaling_is_finite = layers.isfinite(new_loss_scaling)
                    with layers.Switch() as switch2:
                        with switch2.case(loss_scaling_is_finite):
                            layers.assign(new_loss_scaling, prev_loss_scaling)
                        with switch2.default():
                            pass
                    layers.assign(zero_steps, num_good_steps)
                    layers.assign(zero_steps, num_bad_steps)

                with switch1.default():
                    layers.increment(num_good_steps)
                    layers.assign(zero_steps, num_bad_steps)

        with switch.default():
            should_decr_loss_scaling = layers.less_than(decr_every_n_nan_or_inf,
                                                        num_bad_steps + 1)
            with layers.Switch() as switch3:
                with switch3.case(should_decr_loss_scaling):
                    new_loss_scaling = prev_loss_scaling * decr_ratio
                    static_loss_scaling = \
                        layers.fill_constant(shape=[1],
                                             dtype='float32',
                                             value=1.0)
                    less_than_one = layers.less_than(new_loss_scaling,
                                                     static_loss_scaling)
                    with layers.Switch() as switch4:
                        with switch4.case(less_than_one):
                            layers.assign(static_loss_scaling,
                                          prev_loss_scaling)
                        with switch4.default():
                            layers.assign(new_loss_scaling, prev_loss_scaling)
                    layers.assign(zero_steps, num_good_steps)
                    layers.assign(zero_steps, num_bad_steps)
                with switch3.default():
                    layers.assign(zero_steps, num_good_steps)
                    layers.increment(num_bad_steps)