Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
5b540a19
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
5b540a19
编写于
6月 29, 2019
作者:
Y
Yibing Liu
提交者:
GitHub
6月 29, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
init custom black white list (#18377) (#18417)
test=release/1.5
上级
0a8b69fc
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
63 addition
and
14 deletion
+63
-14
paddle/fluid/API.spec
paddle/fluid/API.spec
+2
-1
python/paddle/fluid/contrib/mixed_precision/__init__.py
python/paddle/fluid/contrib/mixed_precision/__init__.py
+2
-0
python/paddle/fluid/contrib/mixed_precision/decorator.py
python/paddle/fluid/contrib/mixed_precision/decorator.py
+12
-6
python/paddle/fluid/contrib/mixed_precision/fp16_lists.py
python/paddle/fluid/contrib/mixed_precision/fp16_lists.py
+41
-0
python/paddle/fluid/contrib/mixed_precision/fp16_utils.py
python/paddle/fluid/contrib/mixed_precision/fp16_utils.py
+6
-7
未找到文件。
paddle/fluid/API.spec
浏览文件 @
5b540a19
...
...
@@ -428,7 +428,8 @@ paddle.fluid.contrib.HDFSClient.upload (ArgSpec(args=['self', 'hdfs_path', 'loca
paddle.fluid.contrib.multi_download (ArgSpec(args=['client', 'hdfs_path', 'local_path', 'trainer_id', 'trainers', 'multi_processes'], varargs=None, keywords=None, defaults=(5,)), ('document', '100927be598ed8f9eaa1f3ef1b23568a'))
paddle.fluid.contrib.multi_upload (ArgSpec(args=['client', 'hdfs_path', 'local_path', 'multi_processes', 'overwrite', 'sync'], varargs=None, keywords=None, defaults=(5, False, True)), ('document', '183f34c83d30dbe16e09e8716c41958a'))
paddle.fluid.contrib.extend_with_decoupled_weight_decay (ArgSpec(args=['base_optimizer'], varargs=None, keywords=None, defaults=None), ('document', 'a1095dfd4ec725747f662d69cd7659d4'))
paddle.fluid.contrib.mixed_precision.decorate (ArgSpec(args=['optimizer', 'init_loss_scaling', 'incr_every_n_steps', 'decr_every_n_nan_or_inf', 'incr_ratio', 'decr_ratio', 'use_dynamic_loss_scaling'], varargs=None, keywords=None, defaults=(1.0, 1000, 2, 2.0, 0.8, False)), ('document', 'bdb8f9dbb0d94b3957272c53eeee9818'))
paddle.fluid.contrib.mixed_precision.decorate (ArgSpec(args=['optimizer', 'amp_lists', 'init_loss_scaling', 'incr_every_n_steps', 'decr_every_n_nan_or_inf', 'incr_ratio', 'decr_ratio', 'use_dynamic_loss_scaling'], varargs=None, keywords=None, defaults=(None, 1.0, 1000, 2, 2.0, 0.8, False)), ('document', 'd05e71f5b0bd6d92bb94e70e00b3f9cf'))
paddle.fluid.contrib.mixed_precision.AutoMixedPrecisionLists.__init__ (ArgSpec(args=['self', 'custom_white_list', 'custom_black_list'], varargs=None, keywords=None, defaults=(None, None)), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.contrib.fused_elemwise_activation (ArgSpec(args=['x', 'y', 'functor_list', 'axis', 'scale', 'save_intermediate_out'], varargs=None, keywords=None, defaults=(-1, 0.0, True)), ('document', '1c4b247a2858cea8d9d8750693688270'))
paddle.fluid.contrib.BasicGRUUnit.__init__ (ArgSpec(args=['self', 'name_scope', 'hidden_size', 'param_attr', 'bias_attr', 'gate_activation', 'activation', 'dtype'], varargs=None, keywords=None, defaults=(None, None, None, None, 'float32')), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.contrib.BasicGRUUnit.add_parameter (ArgSpec(args=['self', 'name', 'parameter'], varargs=None, keywords=None, defaults=None), ('document', 'f35ab374c7d5165c3daf3bd64a5a2ec1'))
...
...
python/paddle/fluid/contrib/mixed_precision/__init__.py
浏览文件 @
5b540a19
...
...
@@ -15,5 +15,7 @@
from
__future__
import
print_function
from
.
import
decorator
from
.decorator
import
*
from
.fp16_lists
import
AutoMixedPrecisionLists
__all__
=
decorator
.
__all__
__all__
+=
fp16_lists
.
__all__
python/paddle/fluid/contrib/mixed_precision/decorator.py
浏览文件 @
5b540a19
...
...
@@ -19,6 +19,7 @@ from ... import unique_name
from
.
import
fp16_utils
from
.fp16_utils
import
create_master_params_grads
,
master_param_to_train_param
from
.fp16_utils
import
update_loss_scaling
,
rewrite_program
from
.fp16_lists
import
AutoMixedPrecisionLists
__all__
=
[
"decorate"
]
...
...
@@ -34,6 +35,7 @@ class OptimizerWithMixedPrecison(object):
Args:
optimizer (Optimizer): A common Optimizer object.
amp_lists (AutoMixedPrecisionLists): An AutoMixedPrecisionLists object.
init_loss_scaling (float): The initial loss scaling factor.
use_dynamic_loss_scaling (bool): Whether to use dynamic loss scaling.
incr_every_n_steps(int): Increases loss scaling every n consecutive
...
...
@@ -48,10 +50,11 @@ class OptimizerWithMixedPrecison(object):
"""
def
__init__
(
self
,
optimizer
,
init_loss_scaling
,
use_dynamic
_loss_scaling
,
incr_every_n_steps
,
decr_every_n_nan_or_inf
,
incr_ratio
,
decr_ratio
):
def
__init__
(
self
,
optimizer
,
amp_lists
,
init
_loss_scaling
,
use_dynamic_loss_scaling
,
incr_every_n_steps
,
decr_
every_n_nan_or_inf
,
incr_ratio
,
decr_
ratio
):
self
.
_optimizer
=
optimizer
self
.
_amp_lists
=
amp_lists
self
.
_param_grads
=
None
self
.
_train_program
=
default_main_program
()
self
.
_startup_prog
=
default_startup_program
()
...
...
@@ -120,7 +123,7 @@ class OptimizerWithMixedPrecison(object):
A list of (param, grad), which is a tuple of a parameter and its
gradient respectively, and the scaled loss.
"""
rewrite_program
(
self
.
_train_program
)
rewrite_program
(
self
.
_train_program
,
self
.
_amp_lists
)
scaled_loss
=
loss
*
self
.
_loss_scaling
self
.
_param_grads
=
self
.
_optimizer
.
backward
(
scaled_loss
,
startup_program
,
parameter_list
,
no_grad_set
,
...
...
@@ -189,6 +192,7 @@ class OptimizerWithMixedPrecison(object):
def
decorate
(
optimizer
,
amp_lists
=
None
,
init_loss_scaling
=
1.0
,
incr_every_n_steps
=
1000
,
decr_every_n_nan_or_inf
=
2
,
...
...
@@ -200,6 +204,7 @@ def decorate(optimizer,
Args:
optimizer(Optimizer): A common Optimizer.
amp_lists (AutoMixedPrecisionLists): An AutoMixedPrecisionLists object.
init_loss_scaling(float): The initial loss scaling factor.
incr_every_n_steps(int): Increases loss scaling every n consecutive
steps with finite gradients.
...
...
@@ -227,9 +232,10 @@ def decorate(optimizer,
scaled_loss, _, _ = mp_optimizer.minimize(loss)
"""
if
amp_lists
is
None
:
amp_lists
=
AutoMixedPrecisionLists
()
mp_optimizer
=
OptimizerWithMixedPrecison
(
optimizer
,
init_loss_scaling
,
use_dynamic_loss_scaling
,
optimizer
,
amp_lists
,
init_loss_scaling
,
use_dynamic_loss_scaling
,
incr_every_n_steps
,
decr_every_n_nan_or_inf
,
incr_ratio
,
decr_ratio
)
return
mp_optimizer
python/paddle/fluid/contrib/mixed_precision/fp16_lists.py
浏览文件 @
5b540a19
...
...
@@ -12,6 +12,47 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import
copy
__all__
=
[
"AutoMixedPrecisionLists"
]
class
AutoMixedPrecisionLists
(
object
):
"""
AutoMixedPrecisionLists is a class for black/white list. It can update
pre-defined black list and white list according to users' custom black
white lists. The lists are used for an algorithm which determines op's
exectuion mode (fp32 or fp16).
Args:
custom_white_list (set): Users' custom white list.
custom_black_list (set): Users' custom black list.
"""
def
__init__
(
self
,
custom_white_list
=
None
,
custom_black_list
=
None
):
self
.
_custom_white_list
=
custom_white_list
self
.
_custom_black_list
=
custom_black_list
self
.
white_list
=
copy
.
copy
(
white_list
)
self
.
black_list
=
copy
.
copy
(
black_list
)
self
.
gray_list
=
copy
.
copy
(
gray_list
)
self
.
_update_list
()
def
_update_list
(
self
):
"""
Update black and white list according to users' custom list.
"""
if
self
.
_custom_white_list
:
for
op_name
in
self
.
_custom_white_list
:
if
op_name
in
self
.
black_list
:
self
.
black_list
.
remove
(
op_name
)
self
.
white_list
.
add
(
op_name
)
if
self
.
_custom_black_list
:
for
op_name
in
self
.
_custom_black_list
:
if
op_name
in
self
.
white_list
:
self
.
white_list
.
remove
(
op_name
)
self
.
black_list
.
add
(
op_name
)
# The three sets listed below are changed dynamiclly. They don't contain all
# paddle ops currently.
...
...
python/paddle/fluid/contrib/mixed_precision/fp16_utils.py
浏览文件 @
5b540a19
...
...
@@ -17,7 +17,6 @@ from __future__ import print_function
from
...
import
core
from
...
import
layers
from
...
import
framework
from
.fp16_lists
import
black_list
,
white_list
,
gray_list
def
append_cast_op
(
i
,
o
,
prog
):
...
...
@@ -218,7 +217,7 @@ def find_true_prev_op(ops, var_name):
return
op
def
rewrite_program
(
main_prog
):
def
rewrite_program
(
main_prog
,
amp_lists
):
"""
Traverse all ops in current block and insert cast op according to
which set current op belongs to.
...
...
@@ -244,11 +243,11 @@ def rewrite_program(main_prog):
black_op_set
=
set
()
for
i
in
range
(
len
(
ops
)):
op
=
ops
[
i
]
if
op
.
type
in
black_list
:
if
op
.
type
in
amp_lists
.
black_list
:
black_op_set
.
add
(
op
)
elif
op
.
type
in
white_list
:
elif
op
.
type
in
amp_lists
.
white_list
:
white_op_set
.
add
(
op
)
elif
op
.
type
in
op
.
type
in
gray_list
:
elif
op
.
type
in
amp_lists
.
gray_list
:
is_black_op
=
False
is_white_op
=
False
for
in_name
in
op
.
input_names
:
...
...
@@ -265,10 +264,10 @@ def rewrite_program(main_prog):
prev_op
=
in_var
.
op
# if it's one of inputs
if
prev_op
in
black_op_set
or
\
prev_op
.
type
in
black_list
:
prev_op
.
type
in
amp_lists
.
black_list
:
is_black_op
=
True
if
prev_op
in
white_op_set
or
\
prev_op
.
type
in
white_list
:
prev_op
.
type
in
amp_lists
.
white_list
:
is_white_op
=
True
if
is_black_op
:
black_op_set
.
add
(
op
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录