control_flow.py 62.6 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
D
dzhwinter 已提交
14
import contextlib
D
dzhwinter 已提交
15

Y
yuyang18 已提交
16
from layer_function_generator import autodoc, templatedoc
Y
Yu Yang 已提交
17
from tensor import assign, fill_constant
18
from .. import core
19
from ..framework import Program, Variable, Operator
20
from ..layer_helper import LayerHelper, unique_name
J
JiayiFeng 已提交
21
from ..initializer import force_init_on_cpu
22
from ops import logical_and, logical_not, logical_or
Y
yuyang18 已提交
23
import numpy
D
dzhwinter 已提交
24

Q
QI JUN 已提交
25
__all__ = [
Y
ying 已提交
26 27 28 29 30 31 32
    'split_lod_tensor',
    'merge_lod_tensor',
    'BlockGuard',
    'BlockGuardWithCompletion',
    'StaticRNNMemoryLink',
    'WhileGuard',
    'While',
33
    'Switch',
Y
ying 已提交
34 35 36 37 38 39 40 41
    'lod_rank_table',
    'max_sequence_len',
    'lod_tensor_to_array',
    'array_to_lod_tensor',
    'increment',
    'array_write',
    'create_array',
    'less_than',
42
    'equal',
Y
ying 已提交
43 44 45 46 47 48 49 50 51 52
    'array_read',
    'shrink_memory',
    'array_length',
    'IfElse',
    'DynamicRNN',
    'ConditionalBlock',
    'StaticRNN',
    'reorder_lod_tensor_by_rank',
    'ParallelDo',
    'Print',
53
    'is_empty',
D
dzhwinter 已提交
54 55
]

Y
Yu Yang 已提交
56

57
def split_lod_tensor(input, mask, level=0):
58 59 60 61
    """
    This function takes in an input that contains the complete lod information,
    and takes in a mask which is used to mask certain parts of the input.
    The output is the true branch and the false branch with the mask applied to
Q
qiaolongfei 已提交
62 63
    the input at a certain level in the tensor. Mainly used in IfElse to split
    data into two parts.
64

65 66 67 68
    Args:
        input(tuple|list|None): The input tensor that contains complete
                                lod information needed to construct the output.
        mask(list): A bool column vector which masks the input.
Q
qiaolongfei 已提交
69
        level(int): The specific lod level to split.
70 71

    Returns:
Q
qiaolongfei 已提交
72 73 74 75
        tuple(Variable, Variable):
        The true branch of tensor as per the mask applied to input.

        The false branch of tensor as per the mask applied to input.
76 77 78 79

    Examples:
        .. code-block:: python

Q
qiaolongfei 已提交
80
          x = fluid.layers.data(name='x', shape=[1])
81 82
          x.persistable = True

Q
qiaolongfei 已提交
83
          y = fluid.layers.data(name='y', shape=[1])
84 85
          y.persistable = True

Q
qiaolongfei 已提交
86
          out_true, out_false = fluid.layers.split_lod_tensor(
87
                input=x, mask=y, level=level)
88

89
    """
90
    helper = LayerHelper('split_lod_tensor', **locals())
F
fengjiayi 已提交
91 92
    out_true = helper.create_tmp_variable(dtype=input.dtype)
    out_false = helper.create_tmp_variable(dtype=input.dtype)
93 94 95 96 97 98 99 100 101 102 103 104
    helper.append_op(
        type='split_lod_tensor',
        inputs={
            'X': input,
            'Mask': mask,
        },
        outputs={'OutTrue': out_true,
                 'OutFalse': out_false},
        attrs={'level': level})
    return out_true, out_false


105
def merge_lod_tensor(in_true, in_false, x, mask, level=0):
106 107 108 109 110
    """
    **merge_lod_tensor**

    This function takes in an input :math:`x`, the True branch, the False
    branch and a binary :math:`mask`. Using this information, this function
Q
qiaolongfei 已提交
111 112 113
    merges the True and False branches of the tensor into a single tensor as
    output at a certain lod level indicated by :math:`level`. Used in IfElse
    to merge the output if True block and False Block.
114 115 116 117 118 119 120

    Args:
        in_true(tuple|list|None): The True branch to be merged.
        in_false(tuple|list|None): The False branch to be merged.
        x(tuple|list|None): The input tensor that contains complete
                            lod information needed to construct the output.
        mask(list): A bool column vector which masks the input.
Q
qiaolongfei 已提交
121
        level(int): The specific lod level to merge.
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140

    Returns:
        Variable: The merged output tensor.

    Examples:
        .. code-block:: python

          x = layers.data(
                      name='x', shape=[1], dtype='float32', stop_gradient=False)
          y = layers.data(
                name='y', shape=[1], dtype='bool', stop_gradient=False)

          level = 0

          out_true, out_false = layers.split_lod_tensor(
                input=x, mask=y, level=level)
          out = layers.merge_lod_tensor(
                in_true=out_true, in_false=out_false, mask=y, x=x, level=level)
    """
141
    helper = LayerHelper('merge_lod_tensor', **locals())
F
fengjiayi 已提交
142
    out = helper.create_tmp_variable(dtype=in_true.dtype)
143 144 145 146 147 148 149 150 151 152 153
    helper.append_op(
        type='merge_lod_tensor',
        inputs={'X': x,
                'Mask': mask,
                'InTrue': in_true,
                'InFalse': in_false},
        outputs={'Out': out},
        attrs={'level': level})
    return out


Y
Yan Chunwei 已提交
154 155 156 157 158 159 160
def Print(input,
          first_n=-1,
          message=None,
          summarize=-1,
          print_tensor_name=True,
          print_tensor_type=True,
          print_tensor_shape=True,
Y
yangyaming 已提交
161 162
          print_tensor_lod=True,
          print_phase='both'):
Y
Yan Chunwei 已提交
163 164 165 166 167 168 169 170 171 172
    '''
    **Print operator**

    This creates a print op that will print when a tensor is accessed.

    Wraps the tensor passed in so that whenever that a tensor is accessed,
    the message `message` is printed, along with the current value of the
    tensor `t`.

    Args:
Y
yangyaming 已提交
173 174 175 176 177 178 179 180 181
        input (Variable): A Tensor to print.
        summarize (int): Print this number of elements in the tensor, will print
                all if left is negative.
        message (str): A string message to print as a prefix.
        first_n (int): Only log `first_n` number of times.
        print_tensor_name (bool): Print the tensor name.
        print_tensor_type (bool): Print the tensor type.
        print_tensor_shape (bool): Print the tensor shape.
        print_tensor_lod (bool): Print the tensor lod.
182
        print_phase (str): Which phase to displace, including 'forward',
Y
yangyaming 已提交
183 184
                'backward' and 'both'. If set to 'backward' or 'both', will
                print the gradients of input tensor.
Y
Yan Chunwei 已提交
185 186

    Returns:
Y
yangyaming 已提交
187
        Variable: Output tensor, same data with input tensor.
Y
Yan Chunwei 已提交
188 189 190 191 192 193 194 195 196

    Examples:
        .. code-block:: python

        value = some_layer(...)
        Print(value, summarize=10,
              message="The content of some_layer: ")
    '''
    helper = LayerHelper('print', **locals())
Y
yangyaming 已提交
197
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
Y
Yan Chunwei 已提交
198 199
    helper.append_op(
        type='print',
Y
yangyaming 已提交
200
        inputs={'In': input},
Y
Yan Chunwei 已提交
201 202 203 204 205 206 207 208
        attrs={
            'first_n': first_n,
            'summarize': summarize,
            'message': message or "",
            'print_tensor_name': print_tensor_name,
            'print_tensor_type': print_tensor_type,
            'print_tensor_shape': print_tensor_shape,
            'print_tensor_lod': print_tensor_lod,
Y
yangyaming 已提交
209 210 211
            'print_phase': print_phase.upper()
        },
        outputs={'Out': out})
Y
Yan Chunwei 已提交
212 213 214
    return out


Y
Yu Yang 已提交
215 216
class BlockGuard(object):
    """
217 218 219 220
    BlockGuard class.

    BlockGuard class is used to create a sub-block in a program by
    using the Python `with` keyword.
Y
Yu Yang 已提交
221 222
    """

223 224
    def __init__(self, main_program):
        if not isinstance(main_program, Program):
Y
Yu Yang 已提交
225
            raise TypeError("BlockGuard takes a program")
226
        self.main_program = main_program
Y
Yu Yang 已提交
227 228

    def __enter__(self):
229
        self.main_program.create_block()
Y
Yu Yang 已提交
230 231

    def __exit__(self, exc_type, exc_val, exc_tb):
232
        self.main_program.rollback()
Y
Yu Yang 已提交
233 234 235 236 237
        if exc_type is not None:
            return False  # re-raise exception
        return True


Y
Yang Yang 已提交
238
class ParallelDo(object):
239
    """
Y
Yang Yang 已提交
240
    ParallelDo class.
241

Y
Yang Yang 已提交
242 243 244
    ParallelDo class is used to create a ParallelDo.
    """

Y
Yang Yang 已提交
245
    def __init__(self, places, use_nccl=False, name=None):
Y
Yang Yang 已提交
246 247 248 249 250
        self.helper = LayerHelper("parallel_do", name=name)
        self.inputs = []
        self.places = places
        self.outputs = []
        self.status = StaticRNN.BEFORE_RNN_BLOCK
Y
Yang Yang 已提交
251
        self.use_nccl = use_nccl
Y
Yang Yang 已提交
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274

    def do(self):
        return BlockGuardWithCompletion(self)

    def parent_block(self):
        prog = self.helper.main_program
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)
        return parent_block

    def __call__(self, *args, **kwargs):
        if self.status != StaticRNN.AFTER_RNN_BLOCK:
            raise ValueError("RNN output can only be retrieved after rnn block")
        if len(self.outputs) == 0:
            raise ValueError("RNN has no output")
        elif len(self.outputs) == 1:
            return self.outputs[0]
        else:
            return self.outputs

    def read_input(self, var):
        self.inputs.append(var)
Y
Yang Yang 已提交
275
        return var
Y
Yang Yang 已提交
276 277 278 279 280 281 282 283 284 285

    def write_output(self, var):
        self.outputs.append(var)

    def get_parameters(self):
        main_program = self.helper.main_program
        current_block = main_program.current_block()
        parent_block = self.parent_block()

        local_inputs = set()
Y
Yang Yang(Tony) 已提交
286
        params = list()
Y
Yang Yang 已提交
287 288 289 290 291 292 293 294
        for var in self.inputs:
            local_inputs.add(var.name)

        for op in current_block.ops:
            for iname in op.input_names:
                for in_var_name in op.input(iname):
                    if in_var_name not in local_inputs:
                        params.append(in_var_name)
Y
Yang Yang(Tony) 已提交
295 296 297 298 299

            for oname in op.output_names:
                for out_var_name in op.output(oname):
                    local_inputs.add(out_var_name)

Y
Yang Yang 已提交
300
        params = list(set(params))
Y
Yang Yang 已提交
301 302 303 304 305 306 307 308 309 310 311

        return [parent_block.var(name) for name in params]

    def complete_op(self):
        main_program = self.helper.main_program
        current_block = main_program.current_block()
        parent_block = self.parent_block()

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)

Y
Yang Yang 已提交
312 313 314 315 316 317 318 319 320 321
        self.outputs = [
            parent_block.create_var(
                name=o.name,
                shape=o.shape,
                dtype=o.dtype,
                lod_level=o.lod_level,
                persistable=o.persistable,
                stop_gradient=o.stop_gradient) for o in self.outputs
        ]

Y
Yang Yang 已提交
322
        inputs = [parent_block.var(i.name) for i in self.inputs]
Y
Yang Yang 已提交
323
        outputs = [parent_block.var(o.name) for o in self.outputs]
Y
Yang Yang 已提交
324 325 326 327 328 329 330 331

        parent_block.append_op(
            type='parallel_do',
            inputs={
                'inputs': inputs,
                'parameters': self.get_parameters(),
                'places': self.places
            },
Y
Yang Yang 已提交
332
            outputs={'outputs': outputs,
Y
Yang Yang 已提交
333
                     'parallel_scopes': [step_scope]},
Y
Yang Yang 已提交
334 335
            attrs={'sub_block': current_block,
                   'use_nccl': self.use_nccl})
Y
Yang Yang 已提交
336 337 338 339 340 341 342


class BlockGuardWithCompletion(BlockGuard):
    """
    BlockGuardWithCompletion class.

    BlockGuardWithCompletion class is used to create an op with a block in a program.
343 344
    """

Y
Yu Yang 已提交
345
    def __init__(self, rnn):
Y
Yang Yang 已提交
346 347 348 349
        if not (isinstance(rnn, StaticRNN) or isinstance(rnn, ParallelDo)):
            raise TypeError(
                "BlockGuardWithCompletion takes a StaticRNN or ParallelDo")
        super(BlockGuardWithCompletion, self).__init__(rnn.helper.main_program)
Y
Yu Yang 已提交
350 351 352 353
        self.rnn = rnn

    def __enter__(self):
        self.rnn.status = StaticRNN.IN_RNN_BLOCK
Y
Yang Yang 已提交
354
        return super(BlockGuardWithCompletion, self).__enter__()
Y
Yu Yang 已提交
355 356

    def __exit__(self, exc_type, exc_val, exc_tb):
Y
Yu Yang 已提交
357 358
        if exc_type is not None:
            return False
Y
Yu Yang 已提交
359
        self.rnn.status = StaticRNN.AFTER_RNN_BLOCK
Y
Yang Yang 已提交
360 361 362
        self.rnn.complete_op()
        return super(BlockGuardWithCompletion, self).__exit__(exc_type, exc_val,
                                                              exc_tb)
Y
Yu Yang 已提交
363 364 365 366


class StaticRNNMemoryLink(object):
    """
367 368 369 370 371 372 373 374 375 376 377 378
    StaticRNNMemoryLink class.

    Args:
        init: the initial variable for Memory
        init: Variable
        pre_mem: the memory variable in previous time step
        pre_mem: Variable
        mem: the memory variable in current time step
        mem: Variable

    StaticRNNMemoryLink class is used to create a link between two
    memory cells of a StaticRNN.
Y
Yu Yang 已提交
379 380 381 382 383 384 385 386 387
    """

    def __init__(self, init, pre_mem, mem=None):
        self.init = init
        self.pre_mem = pre_mem
        self.mem = mem


class StaticRNN(object):
388 389 390 391 392 393
    """
    StaticRNN class.

    StaticRNN class is used to create a StaticRNN. The RNN will have its
    own parameters like inputs, outputs, memories, status and length.
    """
Y
Yu Yang 已提交
394 395 396 397
    BEFORE_RNN_BLOCK = 0
    IN_RNN_BLOCK = 1
    AFTER_RNN_BLOCK = 2

398 399
    def __init__(self, name=None):
        self.helper = LayerHelper("static_rnn", name=name)
Y
Yu Yang 已提交
400 401 402 403 404 405 406 407
        self.memories = {}  # memory map, from pre_mem.name --> MemoryLink
        self.inputs = []  # input variable list in current block
        self.outputs = []  # output variable list in parent block
        self.status = StaticRNN.BEFORE_RNN_BLOCK  # status flag.
        # sequence length, since it is a static RNN, sequence length are fixed.
        self.seq_len = None

    def step(self):
Y
Yang Yang 已提交
408
        return BlockGuardWithCompletion(self)
Y
Yu Yang 已提交
409 410 411 412 413

    def _assert_in_rnn_block_(self, method):
        if self.status != StaticRNN.IN_RNN_BLOCK:
            raise ValueError("You must invoke {0} in rnn block".format(method))

414 415 416 417 418 419 420
    def memory(self,
               init=None,
               shape=None,
               batch_ref=None,
               init_value=0.0,
               init_batch_dim_idx=0,
               ref_batch_dim_idx=1):
421 422 423 424 425 426 427 428 429
        """
        Args:
            init: boot memory, if not set, a shape, batch_ref must be provided
            shape: shape of the boot memory
            batch_ref: batch size reference variable
            init_value: the init value of boot memory
            init_batch_dim_idx: the index of batch size in init's dimension
            ref_batch_dim_idx: the index of batch size in batch_ref's dimension
        """
Y
Yu Yang 已提交
430 431
        self._assert_in_rnn_block_('memory')
        if init is None:
432
            if shape is None or batch_ref is None:
Y
Yu Yang 已提交
433
                raise ValueError(
434
                    "if init is None, memory at least need shape and batch_ref")
Y
Yu Yang 已提交
435
            parent_block = self.parent_block()
Y
Yu Yang 已提交
436 437
            var_name = unique_name.generate("@".join(
                [self.helper.name, "memory_boot"]))
Y
Yu Yang 已提交
438
            boot_var = parent_block.create_var(
439 440
                name=var_name,
                shape=shape,
F
fengjiayi 已提交
441
                dtype=batch_ref.dtype,
442
                persistable=False)
Y
Yu Yang 已提交
443 444

            parent_block.append_op(
445 446
                type="fill_constant_batch_size_like",
                inputs={'Input': [batch_ref]},
Y
Yu Yang 已提交
447 448 449
                outputs={'Out': [boot_var]},
                attrs={
                    'value': init_value,
450
                    'shape': boot_var.shape,
F
fengjiayi 已提交
451
                    'dtype': boot_var.dtype,
452 453
                    'input_dim_idx': ref_batch_dim_idx,
                    'output_dim_idx': init_batch_dim_idx
Y
Yu Yang 已提交
454 455 456 457 458
                })

            return self.memory(init=boot_var)
        else:
            pre_mem = self.helper.create_variable(
Y
Yu Yang 已提交
459
                name=unique_name.generate("@".join([self.helper.name, "mem"])),
F
fengjiayi 已提交
460
                dtype=init.dtype,
Y
Yu Yang 已提交
461 462 463 464 465 466 467 468 469 470
                shape=init.shape)
            self.memories[pre_mem.name] = StaticRNNMemoryLink(
                init=init, pre_mem=pre_mem)
            return pre_mem

    def step_input(self, x):
        self._assert_in_rnn_block_('step_input')
        if not isinstance(x, Variable):
            raise TypeError("step input takes a Variable")
        if self.seq_len is None:
Y
Yu Yang 已提交
471 472
            self.seq_len = x.shape[0]
        elif self.seq_len != x.shape[0]:
Y
Yu Yang 已提交
473 474 475
            raise ValueError("Static RNN only take fix seq_len input")

        ipt = self.helper.create_variable(
F
fengjiayi 已提交
476
            name=x.name, dtype=x.dtype, shape=list(x.shape[1:]), type=x.type)
Y
Yu Yang 已提交
477 478 479 480 481 482 483 484
        self.inputs.append(ipt)
        return ipt

    def step_output(self, o):
        self._assert_in_rnn_block_('step_output')
        if not isinstance(o, Variable):
            raise TypeError("step output takes a Variable")

F
fengjiayi 已提交
485
        tmp_o = self.helper.create_tmp_variable(dtype=o.dtype)
Y
Yu Yang 已提交
486 487 488 489
        self.helper.append_op(
            type='rnn_memory_helper',
            inputs={'X': [o]},
            outputs={'Out': tmp_o},
F
fengjiayi 已提交
490
            attrs={'dtype': o.dtype})
Y
Yu Yang 已提交
491

Y
Yu Yang 已提交
492
        out_var = self.parent_block().create_var(
Y
Yu Yang 已提交
493 494
            name=tmp_o.name,
            shape=[self.seq_len] + list(tmp_o.shape),
F
fengjiayi 已提交
495
            dtype=tmp_o.dtype)
Y
Yu Yang 已提交
496 497 498 499 500 501 502 503 504 505 506 507 508

        self.outputs.append(out_var)

    def output(self, *outputs):
        for each in outputs:
            self.step_output(each)

    def update_memory(self, mem, var):
        if not isinstance(mem, Variable) or not isinstance(var, Variable):
            raise TypeError("update memory should take variables")
        self.memories[mem.name].mem = var

    def parent_block(self):
509
        prog = self.helper.main_program
Y
Yu Yang 已提交
510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)
        return parent_block

    def __call__(self, *args, **kwargs):
        if self.status != StaticRNN.AFTER_RNN_BLOCK:
            raise ValueError("RNN output can only be retrieved after rnn block")
        if len(self.outputs) == 0:
            raise ValueError("RNN has no output")
        elif len(self.outputs) == 1:
            return self.outputs[0]
        else:
            return self.outputs

Y
Yang Yang 已提交
525
    def complete_op(self):
526 527
        main_program = self.helper.main_program
        rnn_block = main_program.current_block()
Y
Yu Yang 已提交
528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
        parent_block = self.parent_block()

        local_inputs = set()

        for op in rnn_block.ops:
            assert isinstance(op, Operator)
            for oname in op.output_names:
                for out_var_name in op.output(oname):
                    local_inputs.add(out_var_name)

        for var in self.inputs:
            local_inputs.add(var.name)
        for m in self.memories:
            local_inputs.add(m)

        params = list()
        for op in rnn_block.ops:
            assert isinstance(op, Operator)
            for iname in op.input_names:
                for in_var_name in op.input(iname):
                    if in_var_name not in local_inputs:
                        params.append(in_var_name)

        parameters = [parent_block.var(name) for name in params]

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)

        inlinks = [parent_block.var(i.name) for i in self.inputs]
        outlinks = self.outputs

        boot_memories = []
        pre_memories = []
        memories = []
        for _, mem in self.memories.iteritems():
            boot_memories.append(mem.init)
            pre_memories.append(mem.pre_mem.name)
            mem_var = rnn_block.var(mem.mem.name)
            assert isinstance(mem_var, Variable)
F
fengjiayi 已提交
567
            new_mem = self.helper.create_tmp_variable(dtype=mem_var.dtype)
Y
Yu Yang 已提交
568 569 570 571 572

            rnn_block.append_op(
                type='rnn_memory_helper',
                inputs={'X': [mem_var]},
                outputs={'Out': [new_mem]},
F
fengjiayi 已提交
573
                attrs={'dtype': mem_var.dtype})
Y
Yu Yang 已提交
574 575 576 577 578 579 580 581 582 583 584 585 586 587 588

            memories.append(new_mem.name)

        parent_block.append_op(
            type='recurrent',
            inputs={
                'inputs': inlinks,
                'initial_states': boot_memories,
                'parameters': parameters
            },
            outputs={'outputs': outlinks,
                     'step_scopes': [step_scope]},
            attrs={
                'ex_states': pre_memories,
                'states': memories,
589
                'sub_block': rnn_block
Y
Yu Yang 已提交
590
            })
Y
Yu Yang 已提交
591 592


Y
Yang Yang(Tony) 已提交
593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616
class WhileGuard(BlockGuard):
    def __init__(self, while_op):
        if not isinstance(while_op, While):
            raise TypeError("WhileGuard takes a while op")
        super(WhileGuard, self).__init__(while_op.helper.main_program)
        self.while_op = while_op

    def __enter__(self):
        self.while_op.status = While.IN_WHILE_BLOCK
        return super(WhileGuard, self).__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        if exc_type is not None:
            return False
        self.while_op.status = While.AFTER_WHILE_BLOCK
        self.while_op.complete()
        return super(WhileGuard, self).__exit__(exc_type, exc_val, exc_tb)


class While(object):
    BEFORE_WHILE_BLOCK = 0
    IN_WHILE_BLOCK = 1
    AFTER_WHILE_BLOCK = 2

617 618
    def __init__(self, cond, name=None):
        self.helper = LayerHelper("while", name=name)
Y
Yang Yang(Tony) 已提交
619 620 621 622
        self.status = While.BEFORE_WHILE_BLOCK
        if not isinstance(cond, Variable):
            raise TypeError("condition should be a variable")
        assert isinstance(cond, Variable)
623
        if cond.dtype != core.VarDesc.VarType.BOOL:
Y
Yang Yang(Tony) 已提交
624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
            raise TypeError("condition should be a bool variable")
        if reduce(lambda a, b: a * b, cond.shape, 1) != 1:
            raise TypeError("condition should be a bool scalar")
        self.cond_var = cond

    def block(self):
        return WhileGuard(self)

    def complete(self):
        main_program = self.helper.main_program
        while_block = main_program.current_block()
        parent_block = main_program.block(main_program.current_block()
                                          .parent_idx)

        inner_outputs = {self.cond_var.name}
        x_name_list = set()
        for op in while_block.ops:
            for iname in op.input_names:
                for in_var_name in op.input(iname):
                    if in_var_name not in inner_outputs:
                        x_name_list.add(in_var_name)

            for oname in op.output_names:
                for out_var_name in op.output(oname):
                    inner_outputs.add(out_var_name)

        out_vars = []
        for inner_out_name in inner_outputs:
            if inner_out_name in parent_block.vars:
                out_vars.append(parent_block.var(inner_out_name))

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)

        parent_block.append_op(
            type='while',
            inputs={
Y
Yu Yang 已提交
661 662
                'X':
                [parent_block.var_recursive(x_name) for x_name in x_name_list],
Y
Yang Yang(Tony) 已提交
663 664 665 666
                'Condition': [self.cond_var]
            },
            outputs={'Out': out_vars,
                     'StepScopes': [step_scope]},
667
            attrs={'sub_block': while_block})
Y
Yang Yang(Tony) 已提交
668 669


670
def lod_rank_table(x, level=0):
Y
yangyaming 已提交
671 672 673
    """LoD Rank Table Operator. Given an input variable **x** and a level number
    of LoD, this layer creates a LodRankTable object. A LoDRankTable object
    contains a list of bi-element tuples. Each tuple consists of an index and
674
    a length, both of which are int type. Refering to specified level of LoD,
Y
yangyaming 已提交
675 676 677
    the index is the sequence index number and the length representes the
    sequence length. Please note that the list is ranked in descending order by
    the length. The following is an example:
Y
yangyaming 已提交
678 679 680 681

        .. code-block:: text

            x is a LoDTensor:
Y
yangyaming 已提交
682
                x.lod = [[0,                2, 3],
Y
yangyaming 已提交
683 684 685
                         [0,             5, 6, 7]]
                x.data = [a, b, c, d, e, f, g]

Y
yangyaming 已提交
686 687 688
            1. set level to 0:
                Create lod rank table:
                    lod_rank_table_obj = lod_rank_table(x, level=0)
Y
yangyaming 已提交
689

Y
yangyaming 已提交
690 691 692 693 694 695 696 697 698
                Get:
                    lod_rank_table_obj.items() = [(0, 2), (1, 1)]

            2. set level to 1:
                Create lod rank table:
                    lod_rank_table_obj = lod_rank_table(x, level=1)

                Get:
                    lod_rank_table_obj.items() = [(0, 5), (1, 1), (2, 1)]
Y
yangyaming 已提交
699 700 701 702

    Args:
        x (Variable): Input variable, a LoDTensor based which to create the lod
            rank table.
Y
yangyaming 已提交
703 704
        level (int): Specify the LoD level, on which to create the lod rank
            table.
Y
yangyaming 已提交
705 706 707 708 709 710 711 712

    Returns:
        Variable: The created LoDRankTable object.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10],
713
                                  dtype='float32', lod_level=1)
Y
yangyaming 已提交
714
            out = layers.lod_rank_table(x=x, level=0)
715
    """
Y
Yu Yang 已提交
716 717 718
    helper = LayerHelper("lod_rank_table", **locals())
    table = helper.create_variable(
        type=core.VarDesc.VarType.LOD_RANK_TABLE,
Y
Yu Yang 已提交
719
        name=unique_name.generate("lod_rank_table"))
Y
Yu Yang 已提交
720 721 722 723 724 725
    helper.append_op(
        type='lod_rank_table',
        inputs={'X': x},
        outputs={'Out': table},
        attrs={'level': level})
    return table
Y
Yu Yang 已提交
726 727


Y
yuyang18 已提交
728
@templatedoc()
729
def max_sequence_len(rank_table):
Y
yuyang18 已提交
730 731 732 733 734 735 736 737
    """
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x = fluid.layers.data(name='x', shape=[10], dtype='float32',
    >>>                       lod_level=1)
    >>> rank_table = layers.lod_rank_table(x=x, level=0)
    >>> max_seq_len = layers.max_sequence_len(rank_table)
Y
yangyaming 已提交
738 739

    Args:
Y
yuyang18 已提交
740
        rank_table(${rank_table_type}): ${rank_table_comment}.
Y
yangyaming 已提交
741 742

    Returns:
Y
yuyang18 已提交
743
        ${out_comment}.
F
fengjiayi 已提交
744 745 746 747 748 749 750 751 752 753
    """
    helper = LayerHelper("max_seqence_len", **locals())
    res = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="max_sequence_len",
        inputs={"RankTable": rank_table},
        outputs={"Out": res})
    return res


754
def lod_tensor_to_array(x, table):
755
    """ Convert a LOD_TENSOR to an LOD_TENSOR_ARRAY.
756 757

    Args:
758
        x (Variable|list): The LOD tensor to be converted to a LOD tensor array.
759 760 761 762 763 764 765 766 767 768 769 770 771 772
        table (ParamAttr|list): The variable that stores the level of lod
                                which is ordered by sequence length in
                                descending order.

    Returns:
        Variable: The variable of type array that has been converted from a
                  tensor.

    Examples:
        .. code-block:: python

          x = fluid.layers.data(name='x', shape=[10])
          table = fluid.layers.lod_rank_table(x, level=0)
          array = fluid.layers.lod_tensor_to_array(x, table)
773
    """
774 775
    helper = LayerHelper("lod_tensor_to_array", **locals())
    array = helper.create_variable(
Y
Yu Yang 已提交
776
        name=unique_name.generate("lod_tensor_to_array"),
777
        type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
F
fengjiayi 已提交
778
        dtype=x.dtype)
779 780 781 782 783 784 785 786
    helper.append_op(
        type='lod_tensor_to_array',
        inputs={'X': x,
                'RankTable': table},
        outputs={'Out': array})
    return array


787
def array_to_lod_tensor(x, table):
788
    """Convert a LoD_Tensor_Aarry to an LoDTensor.
789 790

    Args:
791
        x (Variable|list): The lod tensor array to be converted to a tensor.
792 793 794 795 796 797 798 799 800 801 802 803 804 805 806
        table (ParamAttr|list): The variable that stores the level of lod
                                which is ordered by sequence length in
                                descending order.

    Returns:
        Variable: The variable of type tensor that has been converted
                  from an array.

    Examples:
        .. code-block:: python

          x = fluid.layers.data(name='x', shape=[10])
          table = fluid.layers.lod_rank_table(x, level=0)
          array = fluid.layers.lod_tensor_to_array(x, table)
          lod_tensor = fluid.layers.array_to_lod_tensor(array, table)
807
    """
808
    helper = LayerHelper("array_to_lod_tensor", **locals())
F
fengjiayi 已提交
809
    tmp = helper.create_tmp_variable(dtype=x.dtype)
810 811 812 813 814 815 816 817
    helper.append_op(
        type="array_to_lod_tensor",
        inputs={'X': x,
                'RankTable': table},
        outputs={'Out': tmp})
    return tmp


818
def increment(x, value=1.0, in_place=True):
819 820
    """
    This function performs an operation that increments each value in the
821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837
    input :math:`x` by an amount: :math:`value` as mentioned in the input
    parameter. This operation is performed in-place by default.

    Args:
        x (Variable|list): The tensor that has the input values.
        value (float): The amount by which the values should be incremented.
        in_place (bool): If the increment should be performed in-place.

    Returns:
        Variable: The tensor variable storing the transformation of
                  element-wise increment of each value in the input.

    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[32, 32], dtype='float32')
          data = fluid.layers.increment(x=data, value=3.0, in_place=True)
838
    """
Y
Yu Yang 已提交
839
    helper = LayerHelper("increment", **locals())
Y
Yang Yang(Tony) 已提交
840
    if not in_place:
F
fengjiayi 已提交
841
        out = helper.create_tmp_variable(dtype=x.dtype)
Y
Yang Yang(Tony) 已提交
842 843
    else:
        out = x
Y
Yu Yang 已提交
844 845 846
    helper.append_op(
        type='increment',
        inputs={'X': [x]},
Y
Yang Yu 已提交
847
        outputs={'Out': [out]},
848
        attrs={'step': float(value)})
Y
Yang Yu 已提交
849
    return out
Y
Yu Yang 已提交
850 851


852
def array_write(x, i, array=None):
853 854 855 856 857
    """
    This function writes the given input variable to the specified position
    indicating by the arrary index to an output LOD_TENSOR_ARRAY. If the
    output LOD_TENSOR_ARRAY is not given(None), a new one will be created and
    returned.
858 859 860

    Args:
        x (Variable|list): The input tensor from which the data will be read.
861 862 863 864 865 866 867 868
        i (Variable|list): The index of the output LOD_TENSOR_ARRAY, pointing to
                           the position to which the input tensor will be
                           written.
        array (Variable|list): The output LOD_TENSOR_ARRAY to which the input
                               tensor will be written. If this parameter is
                               NONE, a new LOD_TENSOR_ARRAY will be created and
                               returned.

869
    Returns:
870
        Variable: The output LOD_TENSOR_ARRAY where the input tensor is written.
871 872 873 874 875 876 877

    Examples:
        .. code-block::python

          tmp = fluid.layers.zeros(shape=[10], dtype='int32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
          arr = layers.array_write(tmp, i=i)
878
    """
Y
Yu Yang 已提交
879 880 881 882 883
    helper = LayerHelper('array_write', **locals())
    if array is None:
        array = helper.create_variable(
            name="{0}.out".format(helper.name),
            type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
F
fengjiayi 已提交
884
            dtype=x.dtype)
Y
Yu Yang 已提交
885 886 887 888 889 890 891 892
    helper.append_op(
        type='write_to_array',
        inputs={'X': [x],
                'I': [i]},
        outputs={'Out': [array]})
    return array


893
def create_array(dtype):
894
    """
Q
qiaolongfei 已提交
895
    **Create LoDTensorArray**
896

Q
qiaolongfei 已提交
897 898
    This function creates an array of LOD_TENSOR_ARRAY . It is mainly used to
    implement RNN with array_write, array_read and While.
899 900

    Args:
Q
qiaolongfei 已提交
901
        dtype (int|float): The data type of the elements in the lod_tensor_array.
902 903

    Returns:
904
        Variable: The lod_tensor_array variable storing the elements of data type.
905 906 907 908 909 910 911

    Examples:
        .. code-block:: python

          data = fluid.layers.create_array(dtype='float32')

    """
Y
Yang Yang(Tony) 已提交
912 913 914 915 916 917 918
    helper = LayerHelper("array", **locals())
    return helper.create_variable(
        name="{0}.out".format(helper.name),
        type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
        dtype=dtype)


Y
yuyang18 已提交
919 920
@templatedoc()
def less_than(x, y, force_cpu=None, cond=None, **ignored):
921
    """
Y
yuyang18 已提交
922
    ${comment}
923

Y
yuyang18 已提交
924 925
    >>> import paddle.fluid as fluid
    >>> less = fluid.layers.less_than(x=label, y=limit)
926 927

    Args:
Y
yuyang18 已提交
928 929 930
        x(${x_type}): ${x_comment}.
        y(${y_type}): ${y_comment}.
        force_cpu(${force_cpu_type}): ${force_cpu_comment}.
931 932 933
        cond(Variable|None): Optional output variable to store the result of *less_than*

    Returns:
Y
yuyang18 已提交
934
        ${out_comment}.
935
    """
Y
Yang Yang(Tony) 已提交
936 937 938 939 940
    helper = LayerHelper("less_than", **locals())
    if cond is None:
        cond = helper.create_tmp_variable(dtype='bool')
        cond.stop_gradient = True

Y
yuyang18 已提交
941 942 943 944 945 946
    attrs = dict()
    if force_cpu is not None:
        attrs['force_cpu'] = force_cpu
    elif force_init_on_cpu():
        attrs['force_cpu'] = force_init_on_cpu()

Y
Yang Yang(Tony) 已提交
947
    helper.append_op(
J
JiayiFeng 已提交
948 949 950 951
        type='less_than',
        inputs={'X': [x],
                'Y': [y]},
        outputs={'Out': [cond]},
Y
yuyang18 已提交
952
        attrs=attrs)
Y
Yang Yang(Tony) 已提交
953 954 955
    return cond


956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985
def equal(x, y, cond=None, **ignored):
    """
    **equal**

    This layer returns the truth value of :math:`x == y` elementwise.

    Args:
        x(Variable): First operand of *equal*
        y(Variable): Second operand of *equal*
        cond(Variable|None): Optional output variable to store the result of *equal*

    Returns:
        Variable: The tensor variable storing the output of *equal*.

    Examples:
        .. code-block:: python

          less = fluid.layers.equal(x=label, y=limit)
    """
    helper = LayerHelper("equal", **locals())
    if cond is None:
        cond = helper.create_tmp_variable(dtype='bool')
        cond.stop_gradient = True

    helper.append_op(
        type='equal', inputs={'X': [x],
                              'Y': [y]}, outputs={'Out': [cond]})
    return cond


986
def array_read(array, i):
K
kavyasrinet 已提交
987
    """This function performs the operation to read the data in as an
988
    LOD_TENSOR_ARRAY.
K
kavyasrinet 已提交
989 990 991 992 993 994 995
    Args:
        array (Variable|list): The input tensor that will be written to an array.
        i (Variable|list): The subscript index in tensor array, that points the
                           place where data will be written to.
    Returns:
        Variable: The tensor type variable that has the data written to it.
    Examples:
Q
qiaolongfei 已提交
996 997
        .. code-block:: python

K
kavyasrinet 已提交
998 999 1000
          tmp = fluid.layers.zeros(shape=[10], dtype='int32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
          arr = layers.array_read(tmp, i=i)
1001
    """
Y
Yu Yang 已提交
1002 1003 1004 1005 1006
    helper = LayerHelper('array_read', **locals())
    if not isinstance(
            array,
            Variable) or array.type != core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        raise TypeError("array should be tensor array vairable")
F
fengjiayi 已提交
1007
    out = helper.create_tmp_variable(dtype=array.dtype)
Y
Yu Yang 已提交
1008 1009 1010 1011 1012 1013
    helper.append_op(
        type='read_from_array',
        inputs={'X': [array],
                'I': [i]},
        outputs={'Out': [out]})
    return out
Y
Yang Yu 已提交
1014 1015


1016
def shrink_memory(x, i, table):
1017
    """
Y
yuyang18 已提交
1018
    This function creates an operator to shrink rnn memory using the RankTable
1019
    as mentioned in the input parameter.
Y
yuyang18 已提交
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039

    NOTE: This API is very low-level API. It is used by DynamicRNN only.

    Since the Dynamic RNN uses no-padding way to implement RNN. The sequence
    will be sorted by order, and the length of valid memory will be shrink after
    each time step.

    Args:
        x(Variable): The memory object in the previous time step.
        i(Variable): The step count variable. A int scalar as LoDTensor.
        table(Variable): The RNNRankTable object.

    Returns:
        the memory variable after shrink.

    Examples:

        Since this API is very low level API. The example is not provided.
        Please reference the implementation of class DynamicRNN for detail
        usage.
1040
    """
Y
Yang Yu 已提交
1041
    helper = LayerHelper('shrink_memory', **locals())
F
fengjiayi 已提交
1042
    out = helper.create_tmp_variable(dtype=x.dtype)
Y
Yang Yu 已提交
1043
    helper.append_op(
Y
Yang Yu 已提交
1044
        type='shrink_rnn_memory',
Y
Yang Yu 已提交
1045 1046 1047 1048 1049 1050
        inputs={'X': [x],
                'I': [i],
                'RankTable': [table]},
        outputs={'Out': [out]},
        attrs={})
    return out
Y
Yang Yu 已提交
1051 1052


1053
def array_length(array):
1054
    """
Q
qiaolongfei 已提交
1055
    **Get the Length of Input LoDTensorArray**
1056 1057

    This function performs the operation to find the length of the input
1058
    LOD_TENSOR_ARRAY.
K
kavyasrinet 已提交
1059

1060 1061
    Related API: array_read, array_write, While.

K
kavyasrinet 已提交
1062 1063 1064 1065 1066 1067 1068 1069
    Args:
        array (LOD_TENSOR_ARRAY): The input array that will be used
                                  to compute the length.

    Returns:
        Variable: The length of the input LoDTensorArray.

    Examples:
Q
qiaolongfei 已提交
1070
        .. code-block:: python
K
kavyasrinet 已提交
1071 1072 1073 1074 1075

          tmp = fluid.layers.zeros(shape=[10], dtype='int32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
          arr = fluid.layers.array_write(tmp, i=i)
          arr_len = fluid.layers.array_length(arr)
Q
qiaolongfei 已提交
1076

1077
    """
Y
Yang Yu 已提交
1078 1079 1080 1081 1082 1083
    helper = LayerHelper('array_length', **locals())
    tmp = helper.create_tmp_variable(dtype='int64')
    tmp.stop_gradient = True
    helper.append_op(
        type='lod_array_length', inputs={'X': [array]}, outputs={'Out': [tmp]})
    return tmp
Y
Yu Yang 已提交
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102


class ConditionalBlockGuard(BlockGuard):
    def __init__(self, block):
        if not isinstance(block, ConditionalBlock):
            raise TypeError("block should be conditional block")
        super(ConditionalBlockGuard, self).__init__(block.helper.main_program)
        self.block = block

    def __enter__(self):
        return super(ConditionalBlockGuard, self).__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.block.complete()
        return super(ConditionalBlockGuard, self).__exit__(exc_type, exc_val,
                                                           exc_tb)


class ConditionalBlock(object):
1103
    def __init__(self, inputs, is_scalar_condition=False, name=None):
Y
Yu Yang 已提交
1104 1105 1106 1107
        for each_input in inputs:
            if not isinstance(each_input, Variable):
                raise TypeError("Each input should be variable")
        self.inputs = inputs
1108
        self.is_scalar_condition = is_scalar_condition
1109
        self.helper = LayerHelper('conditional_block', name=name)
Y
Yu Yang 已提交
1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133

    def block(self):
        return ConditionalBlockGuard(self)

    def complete(self):
        inside_block = self.helper.main_program.current_block()
        parent_block = self.helper.main_program.block(inside_block.parent_idx)

        intermediate = set()
        params = set()

        for each_op in inside_block.ops:
            assert isinstance(each_op, Operator)
            for iname in each_op.input_names:
                for in_var_name in each_op.input(iname):
                    if in_var_name not in intermediate:
                        params.add(in_var_name)

            for oname in each_op.output_names:
                for out_var_name in each_op.output(oname):
                    intermediate.add(out_var_name)
        input_set = set([ipt.name for ipt in self.inputs])

        param_list = [
Q
Qingsheng Li 已提交
1134
            parent_block.var_recursive(each_name) for each_name in params
Y
Yu Yang 已提交
1135 1136 1137 1138 1139
            if each_name not in input_set
        ]

        out_list = [
            parent_block.var(var_name) for var_name in parent_block.vars
X
xuwei06 已提交
1140
            if var_name in intermediate
Y
Yu Yang 已提交
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
        ]

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)
        parent_block.append_op(
            type='conditional_block',
            inputs={
                'X': self.inputs,
                'Params': param_list,
            },
            outputs={'Out': out_list,
                     'Scope': [step_scope]},
1153 1154 1155 1156 1157 1158 1159
            attrs={
                'sub_block': inside_block,
                'is_scalar_condition': self.is_scalar_condition
            })


class Switch(object):
Q
qiaolongfei 已提交
1160
    """
Q
qiaolongfei 已提交
1161 1162
    Switch class works just like a `if-elif-else`. Can be used in learning rate scheduler
    to modify learning rate
Q
qiaolongfei 已提交
1163 1164 1165 1166

    The Semantics:

    1. A `switch` control-flow checks cases one-by-one.
Q
qiaolongfei 已提交
1167

Q
qiaolongfei 已提交
1168
    2. The condition of each case is a boolean value, which is a scalar Variable.
Q
qiaolongfei 已提交
1169 1170 1171 1172

    3. It runs the first matched case, or the default case if there is one.

    4. Once it matches a case, it runs the corresponding branch and only that branch.
Q
qiaolongfei 已提交
1173 1174 1175 1176

    Examples:
        .. code-block:: python

Q
qiaolongfei 已提交
1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
            lr = fluid.layers.tensor.create_global_var(
                shape=[1],
                value=0.0,
                dtype='float32',
                persistable=True,
                name="learning_rate")
            one_var = tensor.fill_constant(
                shape=[1], dtype='float32', value=1.0)
            two_var = tensor.fill_constant(
                shape=[1], dtype='float32', value=2.0)

            with fluid.layers.control_flow.Switch() as switch:
Q
qiaolongfei 已提交
1189
                with switch.case(global_step == zero_var):
Q
qiaolongfei 已提交
1190 1191 1192
                    fluid.layers.tensor.assign(input=one_var, output=lr)
                with switch.default():
                    fluid.layers.tensor.assign(input=two_var, output=lr)
Q
qiaolongfei 已提交
1193 1194 1195

    """

1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
    def __init__(self, name=None):
        self.helper = LayerHelper('switch', name=name)
        self.inside_scope = False
        self.pre_not_conditions = []

    def case(self, condition):
        """create a new block for this condition
        """
        if not self.inside_scope:
            raise ValueError("case should be called inside with")

        if len(self.pre_not_conditions) == 0:
            cond_block = ConditionalBlock([condition], is_scalar_condition=True)
            not_cond = logical_not(x=condition)
            self.pre_not_conditions.append(not_cond)
        else:
            pre_cond_num = len(self.pre_not_conditions)
            pre_not_cond = self.pre_not_conditions[pre_cond_num - 1]
            new_not_cond = logical_and(
                x=pre_not_cond, y=logical_not(x=condition))
            self.pre_not_conditions.append(new_not_cond)
            cond_block = ConditionalBlock(
                [logical_and(
                    x=pre_not_cond, y=condition)],
                is_scalar_condition=True)

        return ConditionalBlockGuard(cond_block)

    def default(self):
Q
qiaolongfei 已提交
1225 1226
        """
        create a default case for this switch
1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
        """
        pre_cond_num = len(self.pre_not_conditions)
        if pre_cond_num == 0:
            raise ValueError("there should be at least one condition")
        cond_block = ConditionalBlock(
            [self.pre_not_conditions[pre_cond_num - 1]],
            is_scalar_condition=True)
        return ConditionalBlockGuard(cond_block)

    def __enter__(self):
        """
        set flag that now is inside switch.block {}
        :return:
        """
        self.inside_scope = True
        return self

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.inside_scope = False
        if exc_type is not None:
            return False  # re-raise exception

        return True
Y
Yu Yang 已提交
1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285


class IfElseBlockGuard(object):
    def __init__(self, is_true, ifelse):
        if not isinstance(ifelse, IfElse):
            raise TypeError("ifelse must be an instance of IfElse class")

        if ifelse.status != IfElse.OUT_IF_ELSE_BLOCKS:
            raise ValueError("You cannot invoke IfElse.block() inside a block")

        self.is_true = is_true
        self.ie = ifelse
        if is_true:
            self.cond_block = ifelse.conditional_true_block
        else:
            self.cond_block = ifelse.conditional_false_block

        if not isinstance(self.cond_block, ConditionalBlock):
            raise TypeError("Unexpected situation")

        self.cond_block = self.cond_block.block()

    def __enter__(self):
        self.ie.status = IfElse.IN_IF_ELSE_TRUE_BLOCKS if self.is_true else IfElse.IN_IF_ELSE_FALSE_BLOCKS
        self.cond_block.__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        if not self.cond_block.__exit__(exc_type, exc_val, exc_tb):
            # re-raise inside exception
            return False
        if len(self.ie.output_table[1 if self.is_true else 0]) == 0:
            raise ValueError("Must set output inside block")
        self.ie.status = IfElse.OUT_IF_ELSE_BLOCKS


class IfElse(object):
X
Xin Pan 已提交
1286 1287 1288 1289 1290 1291 1292 1293 1294
    """
    if-else control flow.

    Args:
        cond (Variable): condition used to compare.
        name (str, default None): The name of this layer.

    Examples:
          .. code-block:: python
X
Xin Pan 已提交
1295

X
improve  
Xin Pan 已提交
1296
            limit = fluid.layers.fill_constant_batch_size_like(
X
Xin Pan 已提交
1297
                input=label, dtype='int64', shape=[1], value=5.0)
X
improve  
Xin Pan 已提交
1298 1299
            cond = fluid.layers.less_than(x=label, y=limit)
            ie = fluid.layers.IfElse(cond)
X
Xin Pan 已提交
1300 1301
            with ie.true_block():
                true_image = ie.input(image)
X
improve  
Xin Pan 已提交
1302 1303
                hidden = fluid.layers.fc(input=true_image, size=100, act='tanh')
                prob = fluid.layers.fc(input=hidden, size=10, act='softmax')
X
Xin Pan 已提交
1304 1305 1306 1307
                ie.output(prob)

            with ie.false_block():
                false_image = ie.input(image)
X
improve  
Xin Pan 已提交
1308 1309 1310
                hidden = fluid.layers.fc(
                    input=false_image, size=200, act='tanh')
                prob = fluid.layers.fc(input=hidden, size=10, act='softmax')
X
Xin Pan 已提交
1311 1312 1313
                ie.output(prob)
            prob = ie()
    """
Y
Yu Yang 已提交
1314 1315 1316 1317
    OUT_IF_ELSE_BLOCKS = 0
    IN_IF_ELSE_TRUE_BLOCKS = 1
    IN_IF_ELSE_FALSE_BLOCKS = 2

1318
    def __init__(self, cond, name=None):
Y
Yu Yang 已提交
1319 1320
        if not isinstance(cond, Variable):
            raise TypeError("cond must be a Variable")
1321
        self.helper = LayerHelper('ifelse', name=name)
Y
Yu Yang 已提交
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
        self.cond = cond
        self.input_table = {}
        self.status = IfElse.OUT_IF_ELSE_BLOCKS
        self.conditional_true_block = ConditionalBlock(inputs=[self.cond])
        self.conditional_false_block = ConditionalBlock(inputs=[self.cond])
        self.output_table = ([], [])  # (true_outs, false_outs)

    def input(self, x):
        if self.status == IfElse.OUT_IF_ELSE_BLOCKS:
            raise ValueError("input must in true/false blocks")
        if id(x) not in self.input_table:
            parent_block = self.parent_block()
            out_true = parent_block.create_var(
Y
Yu Yang 已提交
1335
                name=unique_name.generate('ifelse_input' + self.helper.name),
F
fengjiayi 已提交
1336
                dtype=x.dtype)
Y
Yu Yang 已提交
1337 1338

            out_false = parent_block.create_var(
Y
Yu Yang 已提交
1339
                name=unique_name.generate('ifelse_input' + self.helper.name),
F
fengjiayi 已提交
1340
                dtype=x.dtype)
Y
Yu Yang 已提交
1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
            parent_block.append_op(
                type='split_lod_tensor',
                inputs={
                    'X': x,
                    'Mask': self.cond,
                },
                outputs={'OutTrue': out_true,
                         'OutFalse': out_false},
                attrs={'level': 0})
            self.input_table[id(x)] = (out_true, out_false)
        else:
            out_true, out_false = self.input_table[id(x)]

        if self.status == IfElse.IN_IF_ELSE_TRUE_BLOCKS:
            return out_true
        else:
            return out_false

    def parent_block(self):
        current_block = self.helper.main_program.current_block()
        return self.helper.main_program.block(current_block.parent_idx)

    def true_block(self):
        return IfElseBlockGuard(True, self)

    def false_block(self):
        return IfElseBlockGuard(False, self)

    def output(self, *outs):
        if self.status == self.OUT_IF_ELSE_BLOCKS:
            raise ValueError("output can only be invoked in the sub-block")

        out_table = self.output_table[1 if self.status ==
                                      self.IN_IF_ELSE_TRUE_BLOCKS else 0]
        parent_block = self.parent_block()
        for each_out in outs:
            if not isinstance(each_out, Variable):
                raise TypeError("Each output should be a variable")
            # create outside tensor
            outside_out = parent_block.create_var(
Y
Yu Yang 已提交
1381 1382
                name=unique_name.generate("_".join(
                    [self.helper.name, 'output'])),
F
fengjiayi 已提交
1383
                dtype=each_out.dtype)
Y
Yu Yang 已提交
1384 1385 1386
            out_table.append(outside_out)

            # assign local var to outside
1387
            assign(input=each_out, output=outside_out)
Y
Yu Yang 已提交
1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410

    def __call__(self):
        if self.status != self.OUT_IF_ELSE_BLOCKS:
            raise ValueError("IfElse::__call__ must be out of sub-block")
        false_len, true_len = map(len, self.output_table)
        if false_len == 0 and true_len == 0:
            raise ValueError("Must invoke true_block/false_block before "
                             "__call__")
        elif false_len != true_len and false_len != 0 and true_len != 0:
            raise ValueError("The output side must be same")
        elif false_len == 0 or true_len == 0:
            return self.output_table[0 if false_len != 0 else 1]

        # else none of false_len/true_len is zero
        # merge together
        rlist = []
        for false_var, true_var in zip(*self.output_table):
            rlist.append(
                merge_lod_tensor(
                    in_true=true_var,
                    in_false=false_var,
                    mask=self.cond,
                    x=self.cond,
1411
                    level=0))
Y
Yu Yang 已提交
1412
        return rlist
1413 1414 1415


class DynamicRNN(object):
Y
yuyang18 已提交
1416
    """
Y
yuyang18 已提交
1417 1418 1419
    The dynamic RNN can process a batch of sequence data. The length of each
    sample sequence can be different. This API automatically process them in
    batch.
Y
yuyang18 已提交
1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447

    The input lod must be set. Please reference `lod_tensor`

    >>> import paddle.fluid as fluid
    >>> data = fluid.layers.data(name='sentence', dtype='int64', lod_level=1)
    >>> embedding = fluid.layers.embedding(input=data, size=[65535, 32],
    >>>                                    is_sparse=True)
    >>>
    >>> drnn = fluid.layers.DynamicRNN()
    >>> with drnn.block():
    >>>     word = drnn.step_input(embedding)
    >>>     prev = drnn.memory(shape=[200])
    >>>     hidden = fluid.layers.fc(input=[word, prev], size=200, act='relu')
    >>>     drnn.update_memory(prev, hidden)  # set prev to hidden
    >>>     drnn.output(hidden)
    >>>
    >>> # last is the last time step of rnn. It is the encoding result.
    >>> last = fluid.layers.sequence_last_step(drnn())

    The dynamic RNN will unfold sequence into timesteps. Users need to define
    how to process each time step during the :code:`with` block.

    The `memory` is used staging data cross time step. The initial value of
    memory can be zero or another variable.

    The dynamic RNN can mark multiple variables as its output. Use `drnn()` to
    get the output sequence.
    """
1448 1449 1450 1451
    BEFORE_RNN = 0
    IN_RNN = 1
    AFTER_RNN = 2

1452 1453
    def __init__(self, name=None):
        self.helper = LayerHelper('dynamic_rnn', name=name)
1454 1455 1456 1457
        self.status = DynamicRNN.BEFORE_RNN
        self.lod_rank_table = None
        self.max_seq_len = None
        self.step_idx = None
1458 1459
        self.zero_idx = fill_constant(
            shape=[1], value=0, dtype='int64', force_cpu=True)
1460 1461 1462 1463 1464 1465 1466 1467 1468 1469
        self.mem_dict = dict()
        self.output_array = []
        self.outputs = []
        self.cond = self.helper.create_tmp_variable(dtype='bool')
        self.cond.stop_gradient = False
        self.while_op = While(self.cond)
        self.input_array = []
        self.mem_link = []

    def step_input(self, x):
Y
yuyang18 已提交
1470 1471 1472 1473 1474 1475 1476 1477 1478
        """
        Mark a sequence as a dynamic RNN input.
        Args:
            x(Variable): The input sequence.

        Returns:
            The current timestep in the input sequence.

        """
1479 1480 1481
        self._assert_in_rnn_block_("step_input")
        if not isinstance(x, Variable):
            raise TypeError(
1482
                "step_input() can only take a Variable as its input.")
1483 1484 1485
        parent_block = self._parent_block_()
        if self.lod_rank_table is None:
            self.lod_rank_table = parent_block.create_var(
Y
Yu Yang 已提交
1486
                name=unique_name.generate('lod_rank_table'),
1487 1488 1489 1490 1491 1492 1493
                type=core.VarDesc.VarType.LOD_RANK_TABLE)
            self.lod_rank_table.stop_gradient = True
            parent_block.append_op(
                type='lod_rank_table',
                inputs={"X": x},
                outputs={"Out": self.lod_rank_table})
            self.max_seq_len = parent_block.create_var(
Y
Yu Yang 已提交
1494 1495
                name=unique_name.generate('dynamic_rnn_max_seq_len'),
                dtype='int64')
1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
            self.max_seq_len.stop_gradient = False
            parent_block.append_op(
                type='max_sequence_len',
                inputs={'RankTable': self.lod_rank_table},
                outputs={"Out": self.max_seq_len})
            self.cond.stop_gradient = True
            parent_block.append_op(
                type='less_than',
                inputs={'X': self.step_idx,
                        'Y': self.max_seq_len},
J
JiayiFeng 已提交
1506 1507
                outputs={'Out': self.cond},
                attrs={'force_cpu': True})
1508 1509

        input_array = parent_block.create_var(
Y
Yu Yang 已提交
1510
            name=unique_name.generate('dynamic_rnn_input_array'),
1511 1512 1513 1514 1515 1516 1517 1518
            type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
            dtype=x.dtype)
        self.input_array.append((input_array, x.dtype))
        parent_block.append_op(
            type='lod_tensor_to_array',
            inputs={'X': x,
                    'RankTable': self.lod_rank_table},
            outputs={'Out': input_array})
1519
        return array_read(array=input_array, i=self.step_idx)
1520

Y
yangyaming 已提交
1521
    def static_input(self, x):
Y
yuyang18 已提交
1522 1523 1524 1525 1526 1527 1528 1529 1530
        """
        Mark a variable as a RNN input. The input will not be scattered into
        time steps.
        Args:
            x(Variable): The input variable.

        Returns:
            The input variable that can access in RNN.
        """
Y
yangyaming 已提交
1531 1532 1533 1534 1535 1536 1537 1538 1539
        self._assert_in_rnn_block_("static_input")
        if not isinstance(x, Variable):
            raise TypeError(
                "static_input() can only take a Variable as its input")
        if self.lod_rank_table is None:
            raise RuntimeError(
                "static_input() must be called after step_input().")
        parent_block = self._parent_block_()
        x_reordered = parent_block.create_var(
Y
Yu Yang 已提交
1540
            name=unique_name.generate("dynamic_rnn_static_input_reordered"),
Y
yangyaming 已提交
1541 1542 1543 1544 1545 1546 1547 1548 1549
            type=core.VarDesc.VarType.LOD_TENSOR,
            dtype=x.dtype)
        parent_block.append_op(
            type='reorder_lod_tensor_by_rank',
            inputs={'X': [x],
                    'RankTable': [self.lod_rank_table]},
            outputs={'Out': [x_reordered]})
        return shrink_memory(x_reordered, self.step_idx, self.lod_rank_table)

1550 1551
    @contextlib.contextmanager
    def block(self):
Y
yuyang18 已提交
1552 1553 1554 1555
        """
        The block for user to define operators in RNN. See the class docstring
        for more details.
        """
1556 1557
        if self.status != DynamicRNN.BEFORE_RNN:
            raise ValueError("rnn.block() can only be invoke once")
1558 1559
        self.step_idx = fill_constant(
            shape=[1], dtype='int64', value=0, force_cpu=True)
1560 1561 1562 1563
        self.step_idx.stop_gradient = False
        self.status = DynamicRNN.IN_RNN
        with self.while_op.block():
            yield
1564
            increment(x=self.step_idx, value=1.0, in_place=True)
1565 1566

            for new_mem, mem_array in self.mem_link:
1567 1568
                array_write(x=new_mem, i=self.step_idx, array=mem_array)

J
JiayiFeng 已提交
1569 1570 1571 1572 1573
            less_than(
                x=self.step_idx,
                y=self.max_seq_len,
                force_cpu=True,
                cond=self.cond)
1574 1575 1576 1577 1578

        self.status = DynamicRNN.AFTER_RNN
        for each_array in self.output_array:
            self.outputs.append(
                array_to_lod_tensor(
1579
                    x=each_array, table=self.lod_rank_table))
1580 1581

    def __call__(self, *args, **kwargs):
Y
yuyang18 已提交
1582 1583 1584
        """
        Get the output of RNN. This API should only be invoked after RNN.block()
        """
1585
        if self.status != DynamicRNN.AFTER_RNN:
1586 1587
            raise ValueError(("Output of the dynamic RNN can only be visited "
                              "outside the rnn block."))
1588 1589 1590 1591 1592
        if len(self.outputs) == 1:
            return self.outputs[0]
        else:
            return self.outputs

1593 1594 1595 1596 1597 1598
    def memory(self,
               init=None,
               shape=None,
               value=0.0,
               need_reorder=False,
               dtype='float32'):
Y
yuyang18 已提交
1599
        """
Y
yuyang18 已提交
1600
        Create a memory variable for dynamic rnn.
Y
yuyang18 已提交
1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662

        If the :code:`init` is not None, :code:`memory` will be initialized by
        this variable. The :code:`need_reorder` is used to reorder the memory as
        the input variable. It should be set to true when the initialized memory
        depends on the input sample.

        For example,

        >>> import paddle.fluid as fluid
        >>> sentence = fluid.layers.data(
        >>>                 name='sentence', dtype='float32', shape=[32])
        >>> boot_memory = fluid.layers.data(
        >>>                 name='boot', dtype='float32', shape=[10])
        >>>
        >>> drnn = fluid.layers.DynamicRNN()
        >>> with drnn.block():
        >>>     word = drnn.step_input(sentence)
        >>>     memory = drnn.memory(init=boot_memory, need_reorder=True)
        >>>     hidden = fluid.layers.fc(
        >>>                 input=[word, memory], size=10, act='tanh')
        >>>     drnn.update_memory(ex_mem=memory, new_mem=hidden)
        >>>     drnn.output(hidden)
        >>> rnn_output = drnn()


        Otherwise, if :code:`shape`, :code:`value`, :code:`dtype` are set, the
        :code:`memory` will be initialized by this :code:`value`.

        For example,

        >>> import paddle.fluid as fluid
        >>> sentence = fluid.layers.data(
        >>>                 name='sentence', dtype='float32', shape=[32])
        >>>
        >>> drnn = fluid.layers.DynamicRNN()
        >>> with drnn.block():
        >>>     word = drnn.step_input(sentence)
        >>>     memory = drnn.memory(shape=[10], dtype='float32', value=0)
        >>>     hidden = fluid.layers.fc(
        >>>             input=[word, memory], size=10, act='tanh')
        >>>     drnn.update_memory(ex_mem=memory, new_mem=hidden)
        >>>     drnn.output(hidden)
        >>> rnn_output = drnn()


        Args:
            init(Variable|None): The initialized variable.

            shape(list|tuple): The memory shape. NOTE the shape does not contain
            batch_size.

            value(float): the initalized value.

            need_reorder(bool): True if the initialized memory depends on the
            input sample.

            dtype(str|numpy.dtype): The data type of the initialized memory.

        Returns:
            the memory variable.

        """
1663 1664 1665 1666 1667 1668
        self._assert_in_rnn_block_('memory')
        if init is not None:
            if not isinstance(init, Variable):
                raise TypeError(
                    "The input arg `init` of memory() must be a Variable")
            parent_block = self._parent_block_()
1669 1670 1671 1672 1673 1674 1675 1676
            init_tensor = init
            if need_reorder == True:
                if self.lod_rank_table is None:
                    raise ValueError(
                        'If set need_reorder to True, make sure step_input be '
                        'invoked before '
                        'memory(init=init, need_reordered=True, ...).')
                init_reordered = parent_block.create_var(
Y
Yu Yang 已提交
1677
                    name=unique_name.generate('dynamic_rnn_mem_init_reordered'),
1678 1679 1680 1681 1682 1683 1684 1685 1686 1687
                    type=core.VarDesc.VarType.LOD_TENSOR,
                    dtype=init.dtype)
                parent_block.append_op(
                    type='reorder_lod_tensor_by_rank',
                    inputs={
                        'X': [init_tensor],
                        'RankTable': [self.lod_rank_table]
                    },
                    outputs={'Out': [init_reordered]})
                init_tensor = init_reordered
1688
            mem_array = parent_block.create_var(
Y
Yu Yang 已提交
1689
                name=unique_name.generate('dynamic_rnn_mem_array'),
1690 1691 1692 1693
                type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                dtype=init.dtype)
            parent_block.append_op(
                type='write_to_array',
1694
                inputs={'X': init_tensor,
1695 1696
                        'I': self.zero_idx},
                outputs={'Out': mem_array})
1697
            retv = array_read(array=mem_array, i=self.step_idx)
1698
            retv = shrink_memory(
1699
                x=retv, i=self.step_idx, table=self.lod_rank_table)
1700 1701 1702 1703 1704 1705 1706 1707 1708
            self.mem_dict[retv.name] = mem_array
            return retv
        else:
            if len(self.input_array) == 0:
                raise ValueError(
                    "step_input should be invoked before memory(shape=..., value=...)"
                )
            parent_block = self._parent_block_()
            init = parent_block.create_var(
Y
Yu Yang 已提交
1709
                name=unique_name.generate('mem_init'), dtype=dtype)
1710
            arr, dtype = self.input_array[0]
Y
Yu Yang 已提交
1711 1712
            in0 = parent_block.create_var(
                name=unique_name.generate('in0'), dtype=dtype)
1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729
            parent_block.append_op(
                type='read_from_array',
                inputs={'X': [arr],
                        'I': [self.zero_idx]},
                outputs={'Out': [in0]})
            parent_block.append_op(
                type='fill_constant_batch_size_like',
                inputs={'Input': [in0]},
                outputs={'Out': [init]},
                attrs={
                    'shape': [-1] + shape,
                    'value': float(value),
                    'dtype': init.dtype
                })
            return self.memory(init=init)

    def update_memory(self, ex_mem, new_mem):
Y
yuyang18 已提交
1730 1731 1732 1733 1734 1735 1736 1737 1738 1739
        """
        Update the memory from ex_mem to new_mem. NOTE that the shape and data
        type of :code:`ex_mem` and :code:`new_mem` must be same.
        Args:
            ex_mem(Variable): the memory variable.
            new_mem(Variable): the plain variable generated in RNN block.

        Returns:
            None
        """
1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756
        self._assert_in_rnn_block_('update_memory')
        if not isinstance(ex_mem, Variable):
            raise TypeError("The input arg `ex_mem` of update_memory() must "
                            "be a Variable")
        if not isinstance(new_mem, Variable):
            raise TypeError("The input arg `new_mem` of update_memory() must "
                            "be a Variable")

        mem_array = self.mem_dict.get(ex_mem.name, None)
        if mem_array is None:
            raise ValueError("Please invoke memory before update_memory")
        if self.lod_rank_table is None:
            raise ValueError("Please invoke step_input before update_memory")

        self.mem_link.append((new_mem, mem_array))

    def output(self, *outputs):
Y
yuyang18 已提交
1757 1758 1759 1760 1761 1762 1763 1764 1765
        """
        mark the RNN output variables.

        Args:
            outputs: The output variables.

        Returns:
            None
        """
1766 1767 1768 1769
        self._assert_in_rnn_block_('output')
        parent_block = self._parent_block_()
        for each in outputs:
            outside_array = parent_block.create_var(
Y
Yu Yang 已提交
1770
                name=unique_name.generate("_".join(
1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788
                    [self.helper.name, "output_array", each.name])),
                type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                dtype=each.dtype)
            array_write(x=each, i=self.step_idx, array=outside_array)
            self.output_array.append(outside_array)

    def _parent_block_(self):
        prog = self.helper.main_program
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)

        return parent_block

    def _assert_in_rnn_block_(self, method):
        if self.status != DynamicRNN.IN_RNN:
            raise ValueError("{0} can only be invoked inside rnn block.".format(
                method))
Y
Yang Yu 已提交
1789 1790


1791
@autodoc()
Y
Yang Yu 已提交
1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803
def reorder_lod_tensor_by_rank(x, rank_table):
    helper = LayerHelper('reorder_lod_tensor_by_rank', **locals())
    helper.is_instance('x', Variable)
    helper.is_instance('rank_table', Variable)

    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='reorder_lod_tensor_by_rank',
        inputs={'X': [x],
                'RankTable': [rank_table]},
        outputs={'Out': [out]})
    return out
1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840


def is_empty(x, cond=None, **ignored):
    """
    **Is Empty**

    This layer returns the truth value of whether the variable is empty.

    Args:
        x(Variable): Operand of *is_empty*
        cond(Variable|None): Optional output variable to store the result
                             of *is_empty*

    Returns:
        Variable: The tensor variable storing the output of *is_empty*.

    Raises:
        TypeError: If input cond is not a variable, or cond's dtype is
                   not bool

    Examples:
        .. code-block:: python

          less = fluid.layers.is_empty(x=input)
    """
    helper = LayerHelper("is_empty", **locals())
    if cond is None:
        cond = helper.create_tmp_variable(dtype='bool')
        cond.stop_gradient = True
    elif not isinstance(cond, Variable):
        raise TypeError("cond takes a variable")
    elif cond.dtype != 'bool':
        raise TypeError("The data type of cond must be bool")

    helper.append_op(
        type='is_empty', inputs={'X': [x]}, outputs={'Out': [cond]})
    return cond