utils.py 5.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import cv2
import time
import paddle
import numpy as np

__all__ = [
    'Timer',
    'Detection',
    'load_det_results',
    'preprocess_reid',
    'get_crops',
    'clip_box',
    'scale_coords',
]


class Timer(object):
    """
    This class used to compute and print the current FPS while evaling.
    """

    def __init__(self):
        self.total_time = 0.
        self.calls = 0
        self.start_time = 0.
        self.diff = 0.
        self.average_time = 0.
        self.duration = 0.

    def tic(self):
        # using time.time instead of time.clock because time time.clock
        # does not normalize for multithreading
        self.start_time = time.time()

    def toc(self, average=True):
        self.diff = time.time() - self.start_time
        self.total_time += self.diff
        self.calls += 1
        self.average_time = self.total_time / self.calls
        if average:
            self.duration = self.average_time
        else:
            self.duration = self.diff
        return self.duration

    def clear(self):
        self.total_time = 0.
        self.calls = 0
        self.start_time = 0.
        self.diff = 0.
        self.average_time = 0.
        self.duration = 0.


class Detection(object):
    """
    This class represents a bounding box detection in a single image.

    Args:
75
        tlwh (Tensor): Bounding box in format `(top left x, top left y,
76
            width, height)`.
77
        score (Tensor): Bounding box confidence score.
78 79
        feature (Tensor): A feature vector that describes the object 
            contained in this image.
80
        cls_id (Tensor): Bounding box category id.
81 82
    """

83
    def __init__(self, tlwh, score, feature, cls_id):
84
        self.tlwh = np.asarray(tlwh, dtype=np.float32)
85 86 87
        self.score = float(score)
        self.feature = np.asarray(feature, dtype=np.float32)
        self.cls_id = int(cls_id)
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110

    def to_tlbr(self):
        """
        Convert bounding box to format `(min x, min y, max x, max y)`, i.e.,
        `(top left, bottom right)`.
        """
        ret = self.tlwh.copy()
        ret[2:] += ret[:2]
        return ret

    def to_xyah(self):
        """
        Convert bounding box to format `(center x, center y, aspect ratio,
        height)`, where the aspect ratio is `width / height`.
        """
        ret = self.tlwh.copy()
        ret[:2] += ret[2:] / 2
        ret[2] /= ret[3]
        return ret


def load_det_results(det_file, num_frames):
    assert os.path.exists(det_file) and os.path.isfile(det_file), \
111
        '{} is not exist or not a file.'.format(det_file)
112
    labels = np.loadtxt(det_file, dtype='float32', delimiter=',')
113 114
    assert labels.shape[1] == 7, \
        "Each line of {} should have 7 items: '[frame_id],[x0],[y0],[w],[h],[score],[class_id]'.".format(det_file)
115
    results_list = []
116 117
    for frame_i in range(num_frames):
        results = {'bbox': [], 'score': [], 'cls_id': []}
118
        lables_with_frame = labels[labels[:, 0] == frame_i + 1]
119 120
        # each line of lables_with_frame:
        # [frame_id],[x0],[y0],[w],[h],[score],[class_id]
121
        for l in lables_with_frame:
122 123
            results['bbox'].append(l[1:5])
            results['score'].append(l[5])
124
            results['cls_id'].append(l[6])
125 126 127 128 129 130
        results_list.append(results)
    return results_list


def scale_coords(coords, input_shape, im_shape, scale_factor):
    im_shape = im_shape.numpy()[0]
131 132 133 134
    ratio = scale_factor[0][0]
    pad_w = (input_shape[1] - int(im_shape[1])) / 2
    pad_h = (input_shape[0] - int(im_shape[0])) / 2
    coords = paddle.cast(coords, 'float32')
135 136
    coords[:, 0::2] -= pad_w
    coords[:, 1::2] -= pad_h
137
    coords[:, 0:4] /= ratio
138 139 140 141 142 143 144 145 146 147 148
    coords[:, :4] = paddle.clip(coords[:, :4], min=0, max=coords[:, :4].max())
    return coords.round()


def clip_box(xyxy, input_shape, im_shape, scale_factor):
    im_shape = im_shape.numpy()[0]
    ratio = scale_factor.numpy()[0][0]
    img0_shape = [int(im_shape[0] / ratio), int(im_shape[1] / ratio)]

    xyxy[:, 0::2] = paddle.clip(xyxy[:, 0::2], min=0, max=img0_shape[1])
    xyxy[:, 1::2] = paddle.clip(xyxy[:, 1::2], min=0, max=img0_shape[0])
149 150 151 152 153 154
    w = xyxy[:, 2:3] - xyxy[:, 0:1]
    h = xyxy[:, 3:4] - xyxy[:, 1:2]
    mask = paddle.logical_and(h > 0, w > 0)
    keep_idx = paddle.nonzero(mask)
    xyxy = paddle.gather_nd(xyxy, keep_idx[:, :1])
    return xyxy, keep_idx
155 156


157
def get_crops(xyxy, ori_img, w, h):
158 159 160 161 162 163 164 165
    crops = []
    xyxy = xyxy.numpy().astype(np.int64)
    ori_img = ori_img.numpy()
    ori_img = np.squeeze(ori_img, axis=0).transpose(1, 0, 2)
    for i, bbox in enumerate(xyxy):
        crop = ori_img[bbox[0]:bbox[2], bbox[1]:bbox[3], :]
        crops.append(crop)
    crops = preprocess_reid(crops, w, h)
166
    return crops
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185


def preprocess_reid(imgs,
                    w=64,
                    h=192,
                    mean=[0.485, 0.456, 0.406],
                    std=[0.229, 0.224, 0.225]):
    im_batch = []
    for img in imgs:
        img = cv2.resize(img, (w, h))
        img = img[:, :, ::-1].astype('float32').transpose((2, 0, 1)) / 255
        img_mean = np.array(mean).reshape((3, 1, 1))
        img_std = np.array(std).reshape((3, 1, 1))
        img -= img_mean
        img /= img_std
        img = np.expand_dims(img, axis=0)
        im_batch.append(img)
    im_batch = np.concatenate(im_batch, 0)
    return im_batch