tracker.py 19.6 KB
Newer Older
G
George Ni 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import cv2
import glob
import paddle
import numpy as np

from ppdet.core.workspace import create
from ppdet.utils.checkpoint import load_weight, load_pretrain_weight
G
George Ni 已提交
27
from ppdet.modeling.mot.utils import Detection, get_crops, scale_coords, clip_box
G
George Ni 已提交
28 29 30
from ppdet.modeling.mot.utils import Timer, load_det_results
from ppdet.modeling.mot import visualization as mot_vis

G
George Ni 已提交
31
from ppdet.metrics import Metric, MOTMetric, KITTIMOTMetric
G
George Ni 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
import ppdet.utils.stats as stats

from .callbacks import Callback, ComposeCallback

from ppdet.utils.logger import setup_logger
logger = setup_logger(__name__)

__all__ = ['Tracker']


class Tracker(object):
    def __init__(self, cfg, mode='eval'):
        self.cfg = cfg
        assert mode.lower() in ['test', 'eval'], \
                "mode should be 'test' or 'eval'"
        self.mode = mode.lower()
        self.optimizer = None

        # build MOT data loader
        self.dataset = cfg['{}MOTDataset'.format(self.mode.capitalize())]

        # build model
        self.model = create(cfg.architecture)

        self.status = {}
        self.start_epoch = 0

        # initial default callbacks
        self._init_callbacks()

        # initial default metrics
        self._init_metrics()
        self._reset_metrics()

    def _init_callbacks(self):
        self._callbacks = []
        self._compose_callback = None

    def _init_metrics(self):
        if self.mode in ['test']:
            self._metrics = []
            return

        if self.cfg.metric == 'MOT':
            self._metrics = [MOTMetric(), ]
G
George Ni 已提交
77 78
        elif self.cfg.metric == 'KITTI':
            self._metrics = [KITTIMOTMetric(), ]
G
George Ni 已提交
79
        else:
80
            logger.warning("Metric not support for metric type {}".format(
G
George Ni 已提交
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
                self.cfg.metric))
            self._metrics = []

    def _reset_metrics(self):
        for metric in self._metrics:
            metric.reset()

    def register_callbacks(self, callbacks):
        callbacks = [h for h in list(callbacks) if h is not None]
        for c in callbacks:
            assert isinstance(c, Callback), \
                    "metrics shoule be instances of subclass of Metric"
        self._callbacks.extend(callbacks)
        self._compose_callback = ComposeCallback(self._callbacks)

    def register_metrics(self, metrics):
        metrics = [m for m in list(metrics) if m is not None]
        for m in metrics:
            assert isinstance(m, Metric), \
                    "metrics shoule be instances of subclass of Metric"
        self._metrics.extend(metrics)

    def load_weights_jde(self, weights):
        load_weight(self.model, weights, self.optimizer)

    def load_weights_sde(self, det_weights, reid_weights):
        if self.model.detector:
108 109 110 111
            load_weight(self.model.detector, det_weights)
            load_weight(self.model.reid, reid_weights)
        else:
            load_weight(self.model.reid, reid_weights, self.optimizer)
G
George Ni 已提交
112 113 114 115 116

    def _eval_seq_jde(self,
                      dataloader,
                      save_dir=None,
                      show_image=False,
117 118
                      frame_rate=30,
                      draw_threshold=0):
G
George Ni 已提交
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
        if save_dir:
            if not os.path.exists(save_dir): os.makedirs(save_dir)
        tracker = self.model.tracker
        tracker.max_time_lost = int(frame_rate / 30.0 * tracker.track_buffer)

        timer = Timer()
        results = []
        frame_id = 0
        self.status['mode'] = 'track'
        self.model.eval()
        for step_id, data in enumerate(dataloader):
            self.status['step_id'] = step_id
            if frame_id % 40 == 0:
                logger.info('Processing frame {} ({:.2f} fps)'.format(
                    frame_id, 1. / max(1e-5, timer.average_time)))

            # forward
            timer.tic()
137 138
            pred_dets, pred_embs = self.model(data)
            online_targets = self.model.tracker.update(pred_dets, pred_embs)
G
George Ni 已提交
139 140

            online_tlwhs, online_ids = [], []
G
George Ni 已提交
141
            online_scores = []
G
George Ni 已提交
142 143 144
            for t in online_targets:
                tlwh = t.tlwh
                tid = t.track_id
G
George Ni 已提交
145
                tscore = t.score
146
                if tscore < draw_threshold: continue
G
George Ni 已提交
147 148 149 150
                vertical = tlwh[2] / tlwh[3] > 1.6
                if tlwh[2] * tlwh[3] > tracker.min_box_area and not vertical:
                    online_tlwhs.append(tlwh)
                    online_ids.append(tid)
G
George Ni 已提交
151
                    online_scores.append(tscore)
G
George Ni 已提交
152 153 154
            timer.toc()

            # save results
G
George Ni 已提交
155 156
            results.append(
                (frame_id + 1, online_tlwhs, online_scores, online_ids))
G
George Ni 已提交
157
            self.save_results(data, frame_id, online_ids, online_tlwhs,
G
George Ni 已提交
158 159
                              online_scores, timer.average_time, show_image,
                              save_dir)
G
George Ni 已提交
160 161 162 163 164 165 166 167 168
            frame_id += 1

        return results, frame_id, timer.average_time, timer.calls

    def _eval_seq_sde(self,
                      dataloader,
                      save_dir=None,
                      show_image=False,
                      frame_rate=30,
169 170
                      det_file='',
                      draw_threshold=0):
G
George Ni 已提交
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
        if save_dir:
            if not os.path.exists(save_dir): os.makedirs(save_dir)
        tracker = self.model.tracker
        use_detector = False if not self.model.detector else True

        timer = Timer()
        results = []
        frame_id = 0
        self.status['mode'] = 'track'
        self.model.eval()
        self.model.reid.eval()
        if not use_detector:
            dets_list = load_det_results(det_file, len(dataloader))
            logger.info('Finish loading detection results file {}.'.format(
                det_file))

        for step_id, data in enumerate(dataloader):
            self.status['step_id'] = step_id
            if frame_id % 40 == 0:
                logger.info('Processing frame {} ({:.2f} fps)'.format(
                    frame_id, 1. / max(1e-5, timer.average_time)))

G
George Ni 已提交
193 194 195 196
            ori_image = data['ori_image']
            input_shape = data['image'].shape[2:]
            im_shape = data['im_shape']
            scale_factor = data['scale_factor']
G
George Ni 已提交
197 198 199 200 201
            timer.tic()
            if not use_detector:
                dets = dets_list[frame_id]
                bbox_tlwh = paddle.to_tensor(dets['bbox'], dtype='float32')
                pred_scores = paddle.to_tensor(dets['score'], dtype='float32')
202
                if pred_scores < draw_threshold: continue
G
George Ni 已提交
203 204 205 206 207 208 209 210
                if bbox_tlwh.shape[0] > 0:
                    pred_bboxes = paddle.concat(
                        (bbox_tlwh[:, 0:2],
                         bbox_tlwh[:, 2:4] + bbox_tlwh[:, 0:2]),
                        axis=1)
                else:
                    pred_bboxes = []
                    pred_scores = []
G
George Ni 已提交
211 212 213 214 215 216 217 218 219
            else:
                outs = self.model.detector(data)
                if outs['bbox_num'] > 0:
                    pred_bboxes = scale_coords(outs['bbox'][:, 2:], input_shape,
                                               im_shape, scale_factor)
                    pred_scores = outs['bbox'][:, 1:2]
                else:
                    pred_bboxes = []
                    pred_scores = []
G
George Ni 已提交
220

G
George Ni 已提交
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
            pred_bboxes = clip_box(pred_bboxes, input_shape, im_shape,
                                   scale_factor)
            bbox_tlwh = paddle.concat(
                (pred_bboxes[:, 0:2],
                 pred_bboxes[:, 2:4] - pred_bboxes[:, 0:2] + 1),
                axis=1)

            crops, pred_scores = get_crops(
                pred_bboxes, ori_image, pred_scores, w=64, h=192)
            crops = paddle.to_tensor(crops)
            pred_scores = paddle.to_tensor(pred_scores)

            data.update({'crops': crops})
            features = self.model(data)
            features = features.numpy()
            detections = [
                Detection(tlwh, score, feat)
                for tlwh, score, feat in zip(bbox_tlwh, pred_scores, features)
            ]
240 241
            self.model.tracker.predict()
            online_targets = self.model.tracker.update(detections)
G
George Ni 已提交
242 243

            online_tlwhs = []
G
George Ni 已提交
244
            online_scores = []
G
George Ni 已提交
245 246 247 248
            online_ids = []
            for track in online_targets:
                if not track.is_confirmed() or track.time_since_update > 1:
                    continue
G
George Ni 已提交
249 250 251
                online_tlwhs.append(track.to_tlwh())
                online_scores.append(1.0)
                online_ids.append(track.track_id)
G
George Ni 已提交
252 253 254
            timer.toc()

            # save results
G
George Ni 已提交
255 256
            results.append(
                (frame_id + 1, online_tlwhs, online_scores, online_ids))
G
George Ni 已提交
257
            self.save_results(data, frame_id, online_ids, online_tlwhs,
G
George Ni 已提交
258 259
                              online_scores, timer.average_time, show_image,
                              save_dir)
G
George Ni 已提交
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
            frame_id += 1

        return results, frame_id, timer.average_time, timer.calls

    def mot_evaluate(self,
                     data_root,
                     seqs,
                     output_dir,
                     data_type='mot',
                     model_type='JDE',
                     save_images=False,
                     save_videos=False,
                     show_image=False,
                     det_results_dir=''):
        if not os.path.exists(output_dir): os.makedirs(output_dir)
        result_root = os.path.join(output_dir, 'mot_results')
        if not os.path.exists(result_root): os.makedirs(result_root)
        assert data_type in ['mot', 'kitti'], \
            "data_type should be 'mot' or 'kitti'"
        assert model_type in ['JDE', 'DeepSORT', 'FairMOT'], \
            "model_type should be 'JDE', 'DeepSORT' or 'FairMOT'"

        # run tracking
283

G
George Ni 已提交
284 285 286
        n_frame = 0
        timer_avgs, timer_calls = [], []
        for seq in seqs:
G
George Ni 已提交
287 288 289 290 291 292 293 294
            if not os.path.isdir(os.path.join(data_root, seq)):
                continue
            infer_dir = os.path.join(data_root, seq, 'img1')
            seqinfo = os.path.join(data_root, seq, 'seqinfo.ini')
            if not os.path.exists(seqinfo) or not os.path.exists(
                    infer_dir) or not os.path.isdir(infer_dir):
                continue

G
George Ni 已提交
295 296 297 298 299 300 301 302 303 304
            save_dir = os.path.join(output_dir, 'mot_outputs',
                                    seq) if save_images or save_videos else None
            logger.info('start seq: {}'.format(seq))

            images = self.get_infer_images(infer_dir)
            self.dataset.set_images(images)

            dataloader = create('EvalMOTReader')(self.dataset, 0)

            result_filename = os.path.join(result_root, '{}.txt'.format(seq))
G
George Ni 已提交
305
            meta_info = open(seqinfo).read()
G
George Ni 已提交
306 307
            frame_rate = int(meta_info[meta_info.find('frameRate') + 10:
                                       meta_info.find('\nseqLength')])
G
George Ni 已提交
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
            with paddle.no_grad():
                if model_type in ['JDE', 'FairMOT']:
                    results, nf, ta, tc = self._eval_seq_jde(
                        dataloader,
                        save_dir=save_dir,
                        show_image=show_image,
                        frame_rate=frame_rate)
                elif model_type in ['DeepSORT']:
                    results, nf, ta, tc = self._eval_seq_sde(
                        dataloader,
                        save_dir=save_dir,
                        show_image=show_image,
                        frame_rate=frame_rate,
                        det_file=os.path.join(det_results_dir,
                                              '{}.txt'.format(seq)))
                else:
                    raise ValueError(model_type)
G
George Ni 已提交
325 326 327 328 329 330 331

            self.write_mot_results(result_filename, results, data_type)
            n_frame += nf
            timer_avgs.append(ta)
            timer_calls.append(tc)

            if save_videos:
G
George Ni 已提交
332 333
                output_video_path = os.path.join(save_dir, '..',
                                                 '{}_vis.mp4'.format(seq))
G
George Ni 已提交
334
                cmd_str = 'ffmpeg -f image2 -i {}/%05d.jpg -vf "scale=trunc(iw/2)*2:trunc(ih/2)*2" {}'.format(
G
George Ni 已提交
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
                    save_dir, output_video_path)
                os.system(cmd_str)
                logger.info('Save video in {}.'.format(output_video_path))

            logger.info('Evaluate seq: {}'.format(seq))
            # update metrics
            for metric in self._metrics:
                metric.update(data_root, seq, data_type, result_root,
                              result_filename)

        timer_avgs = np.asarray(timer_avgs)
        timer_calls = np.asarray(timer_calls)
        all_time = np.dot(timer_avgs, timer_calls)
        avg_time = all_time / np.sum(timer_calls)
        logger.info('Time elapsed: {:.2f} seconds, FPS: {:.2f}'.format(
            all_time, 1.0 / avg_time))

        # accumulate metric to log out
        for metric in self._metrics:
            metric.accumulate()
            metric.log()
        # reset metric states for metric may performed multiple times
        self._reset_metrics()

    def get_infer_images(self, infer_dir):
        assert infer_dir is None or os.path.isdir(infer_dir), \
            "{} is not a directory".format(infer_dir)
        images = set()
        assert os.path.isdir(infer_dir), \
            "infer_dir {} is not a directory".format(infer_dir)
        exts = ['jpg', 'jpeg', 'png', 'bmp']
        exts += [ext.upper() for ext in exts]
        for ext in exts:
            images.update(glob.glob('{}/*.{}'.format(infer_dir, ext)))
        images = list(images)
        images.sort()
        assert len(images) > 0, "no image found in {}".format(infer_dir)
        logger.info("Found {} inference images in total.".format(len(images)))
        return images

    def mot_predict(self,
                    video_file,
377
                    frame_rate,
G
George Ni 已提交
378
                    image_dir,
G
George Ni 已提交
379 380 381 382 383 384
                    output_dir,
                    data_type='mot',
                    model_type='JDE',
                    save_images=False,
                    save_videos=True,
                    show_image=False,
385 386
                    det_results_dir='',
                    draw_threshold=0.5):
G
George Ni 已提交
387 388 389 390 391 392 393
        assert video_file is not None or image_dir is not None, \
            "--video_file or --image_dir should be set."
        assert video_file is None or os.path.isfile(video_file), \
                "{} is not a file".format(video_file)
        assert image_dir is None or os.path.isdir(image_dir), \
                "{} is not a directory".format(image_dir)

G
George Ni 已提交
394 395 396 397 398 399 400 401
        if not os.path.exists(output_dir): os.makedirs(output_dir)
        result_root = os.path.join(output_dir, 'mot_results')
        if not os.path.exists(result_root): os.makedirs(result_root)
        assert data_type in ['mot', 'kitti'], \
            "data_type should be 'mot' or 'kitti'"
        assert model_type in ['JDE', 'DeepSORT', 'FairMOT'], \
            "model_type should be 'JDE', 'DeepSORT' or 'FairMOT'"

G
George Ni 已提交
402 403 404
        # run tracking        
        if video_file:
            seq = video_file.split('/')[-1].split('.')[0]
405
            self.dataset.set_video(video_file, frame_rate)
G
George Ni 已提交
406 407 408 409 410 411 412 413 414 415 416 417 418
            logger.info('Starting tracking video {}'.format(video_file))
        elif image_dir:
            seq = image_dir.split('/')[-1].split('.')[0]
            images = [
                '{}/{}'.format(image_dir, x) for x in os.listdir(image_dir)
            ]
            images.sort()
            self.dataset.set_images(images)
            logger.info('Starting tracking folder {}, found {} images'.format(
                image_dir, len(images)))
        else:
            raise ValueError('--video_file or --image_dir should be set.')

G
George Ni 已提交
419 420 421 422 423
        save_dir = os.path.join(output_dir, 'mot_outputs',
                                seq) if save_images or save_videos else None

        dataloader = create('TestMOTReader')(self.dataset, 0)
        result_filename = os.path.join(result_root, '{}.txt'.format(seq))
424 425
        if frame_rate == -1:
            frame_rate = self.dataset.frame_rate
G
George Ni 已提交
426

G
George Ni 已提交
427 428 429 430 431 432
        with paddle.no_grad():
            if model_type in ['JDE', 'FairMOT']:
                results, nf, ta, tc = self._eval_seq_jde(
                    dataloader,
                    save_dir=save_dir,
                    show_image=show_image,
433 434
                    frame_rate=frame_rate,
                    draw_threshold=draw_threshold)
G
George Ni 已提交
435 436 437 438 439 440 441
            elif model_type in ['DeepSORT']:
                results, nf, ta, tc = self._eval_seq_sde(
                    dataloader,
                    save_dir=save_dir,
                    show_image=show_image,
                    frame_rate=frame_rate,
                    det_file=os.path.join(det_results_dir,
442 443
                                          '{}.txt'.format(seq)),
                    draw_threshold=draw_threshold)
G
George Ni 已提交
444 445
            else:
                raise ValueError(model_type)
G
George Ni 已提交
446

G
George Ni 已提交
447 448
        self.write_mot_results(result_filename, results, data_type)

G
George Ni 已提交
449
        if save_videos:
G
George Ni 已提交
450 451
            output_video_path = os.path.join(save_dir, '..',
                                             '{}_vis.mp4'.format(seq))
G
George Ni 已提交
452
            cmd_str = 'ffmpeg -f image2 -i {}/%05d.jpg -vf "scale=trunc(iw/2)*2:trunc(ih/2)*2" {}'.format(
G
George Ni 已提交
453 454 455 456 457 458
                save_dir, output_video_path)
            os.system(cmd_str)
            logger.info('Save video in {}'.format(output_video_path))

    def write_mot_results(self, filename, results, data_type='mot'):
        if data_type in ['mot', 'mcmot', 'lab']:
G
George Ni 已提交
459
            save_format = '{frame},{id},{x1},{y1},{w},{h},{score},-1,-1,-1\n'
G
George Ni 已提交
460
        elif data_type == 'kitti':
G
George Ni 已提交
461
            save_format = '{frame} {id} car 0 0 -10 {x1} {y1} {x2} {y2} -10 -10 -10 -1000 -1000 -1000 -10\n'
G
George Ni 已提交
462 463 464 465
        else:
            raise ValueError(data_type)

        with open(filename, 'w') as f:
G
George Ni 已提交
466
            for frame_id, tlwhs, tscores, track_ids in results:
G
George Ni 已提交
467 468
                if data_type == 'kitti':
                    frame_id -= 1
G
George Ni 已提交
469
                for tlwh, score, track_id in zip(tlwhs, tscores, track_ids):
G
George Ni 已提交
470 471 472 473 474 475 476 477 478 479 480 481
                    if track_id < 0:
                        continue
                    x1, y1, w, h = tlwh
                    x2, y2 = x1 + w, y1 + h
                    line = save_format.format(
                        frame=frame_id,
                        id=track_id,
                        x1=x1,
                        y1=y1,
                        x2=x2,
                        y2=y2,
                        w=w,
G
George Ni 已提交
482 483
                        h=h,
                        score=score)
G
George Ni 已提交
484 485 486 487
                    f.write(line)
        logger.info('MOT results save in {}'.format(filename))

    def save_results(self, data, frame_id, online_ids, online_tlwhs,
G
George Ni 已提交
488
                     online_scores, average_time, show_image, save_dir):
G
George Ni 已提交
489 490 491 492 493 494 495
        if show_image or save_dir is not None:
            assert 'ori_image' in data
            img0 = data['ori_image'].numpy()[0]
            online_im = mot_vis.plot_tracking(
                img0,
                online_tlwhs,
                online_ids,
G
George Ni 已提交
496
                online_scores,
G
George Ni 已提交
497 498 499 500 501 502 503 504
                frame_id=frame_id,
                fps=1. / average_time)
        if show_image:
            cv2.imshow('online_im', online_im)
        if save_dir is not None:
            cv2.imwrite(
                os.path.join(save_dir, '{:05d}.jpg'.format(frame_id)),
                online_im)