You need to sign in or sign up before continuing.
parallel_executor.py 11.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from __future__ import print_function
16
import multiprocessing
17 18 19
from . import core
from . import framework
from . import executor
J
JiayiFeng 已提交
20
import warnings
Y
Yu Yang 已提交
21
import sys
C
chengduoZH 已提交
22
import os
23

Y
yuyang18 已提交
24
__all__ = ['ParallelExecutor', 'ExecutionStrategy', 'BuildStrategy']
Y
yuyang18 已提交
25 26

ExecutionStrategy = core.ParallelExecutor.ExecutionStrategy
Y
yuyang18 已提交
27
BuildStrategy = core.ParallelExecutor.BuildStrategy
28 29 30


class ParallelExecutor(object):
C
chengduoZH 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
    """
    ParallelExecutor can run program in parallel.

    Args:
        use_cuda (bool): Whether to use CUDA or not.
        loss_name (str): The loss name must set in training. Default None.
        main_program (Program): The program that need to run, if not provided,
            then default_main_program will be used. Default None.
        share_vars_from(ParallelExecutor): If provied, it will share variables
            from the specified ParallelExecutor. Default None.
        num_trainers(int): If greater than 1, NCCL will be initialized with
            multiple rank of nodes, each node should have same number of GPUs.
            Distributed training will be enabled then. Default 1.
        trainer_id(int: Must use together with num_trainers. trainer_id is the
            "rank" of current node starts from 0. Default 0.

    Returns:
        ParallelExecutor: The initialized ParallelExecutor object.

    Raises:
        TypeError: If share_vars_from is provided, but not ParallelExecutor object.

    Examples:
        .. code-block:: python

          train_exe = fluid.ParallelExecutor(use_cuda=True, loss_name=loss.name)
          test_exe = fluid.ParallelExecutor(use_cuda=True,
                                            main_program=test_program,
                                            share_vars_from=train_exe)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
          test_loss, = test_exe.run([loss.name], feed=feed_dict)
    """

X
Xin Pan 已提交
65 66
    def __init__(self,
                 use_cuda,
67 68
                 loss_name=None,
                 main_program=None,
Y
Yu Yang 已提交
69
                 share_vars_from=None,
Y
yuyang18 已提交
70
                 exec_strategy=None,
Y
yuyang18 已提交
71
                 build_strategy=None,
T
typhoonzero 已提交
72
                 num_trainers=1,
73
                 trainer_id=0,
Y
yuyang18 已提交
74 75 76 77 78 79 80 81 82
                 **kwargs):
        if len(kwargs) != 0:
            err_msg = ""
            for key in kwargs:
                if key in dir(ExecutionStrategy):
                    err_msg += \
                        "Setting {0} by constructor is deprecated. Use " \
                        "strategy=ExecutionStrategy(); strategy.{0}=xxx; " \
                        "pe=ParallelExecutor(exec_strategy=strategy) " \
Y
yuyang18 已提交
83 84 85 86 87 88 89 90 91 92
                        "instead.\n ".format(key)
                elif key in dir(BuildStrategy):
                    err_msg += \
                        "Setting {0} by constructor is deprecated. Use " \
                        "strategy=BuildStrategy(); See help(" \
                        "paddle.fluid.ParallelExecutor.BuildStrategy) \n".format(
                            key)
                else:
                    err_msg += "Setting {0} by constructor is deprecated. Use strategy.\n".format(
                        key)
Y
yuyang18 已提交
93
            raise ValueError(err_msg)
94

X
Xin Pan 已提交
95 96
        self._places = []
        self._act_places = []
97
        if use_cuda:
98
            for i in range(core.get_cuda_device_count()):
99
                p = core.Place()
X
Xin Pan 已提交
100 101 102
                self._act_places.append(core.CUDAPlace(i))
                p.set_place(self._act_places[-1])
                self._places.append(p)
103
        else:
C
chengduoZH 已提交
104 105
            cpu_num = int(
                os.environ.get('CPU_NUM', multiprocessing.cpu_count()))
106
            for i in range(cpu_num):
107
                p = core.Place()
L
Luo Tao 已提交
108
                self._act_places.append(core.CPUPlace())
X
Xin Pan 已提交
109 110 111
                p.set_place(self._act_places[-1])
                self._places.append(p)
        assert self._places, "no place for execution"
112

Y
yuyang18 已提交
113 114
        if exec_strategy is None:
            exec_strategy = ExecutionStrategy()
115
        exec_strategy.use_cuda = use_cuda
Y
yuyang18 已提交
116 117

        if exec_strategy.num_threads == 0:
X
Xin Pan 已提交
118 119 120
            if use_cuda:
                # Experiments on se-resnext shows that too many threads hurt
                # performance. Worth tunning for other models in the future.
C
chengduoZH 已提交
121
                exec_strategy.num_threads = len(self._places) * 4
X
Xin Pan 已提交
122
            else:
C
chengduoZH 已提交
123 124 125
                cpu_num = int(
                    os.environ.get('CPU_NUM', multiprocessing.cpu_count()))
                exec_strategy.num_threads = cpu_num
126

Y
yuyang18 已提交
127 128 129
        if build_strategy is None:
            build_strategy = BuildStrategy()

130 131
        main = main_program
        main = main if main else framework.default_main_program()
132
        scope = executor.global_scope()
133 134 135 136 137
        # FIXME(Yancey1989): it's a temporary approach to determinate the distribute
        # train program, call self.bcast_param() at the end of each mini-batch.
        self.is_dist = True if "recv" in [
            op.type for op in main.global_block().ops
        ] else False
138

139 140 141
        if share_vars_from and not isinstance(share_vars_from,
                                              ParallelExecutor):
            raise TypeError("share_vars_from must be ParallelExecutor.")
C
chengduoZH 已提交
142

143 144 145
        local_scopes = share_vars_from.executor.local_scopes(
        ) if share_vars_from else []

T
typhoonzero 已提交
146
        self.persistable_vars = [
147 148 149 150
            v.name for v in [
                var for var in main.list_vars()
                if var.persistable and var.type != core.VarDesc.VarType.RAW
            ]
151 152
        ]

153
        self.executor = core.ParallelExecutor(
X
Xin Pan 已提交
154
            self._places,
155
            set([
156
                p.name for p in main.global_block().iter_parameters()
157 158
                if not p.stop_gradient
            ]),
159 160 161
            set(self.persistable_vars), main.desc, loss_name
            if loss_name else '', scope, local_scopes, exec_strategy,
            build_strategy, num_trainers, trainer_id)
162 163
        self.scope = scope

164
    def run(self, fetch_list, feed=None, feed_dict=None, return_numpy=True):
X
Xin Pan 已提交
165
        """
Y
Yu Yang 已提交
166 167 168 169 170 171 172 173
        Run a parallel executor with fetch_list.

        The feed parameter can be a dict or a list. If feed is a dict, the
        feed data will be split into multiple devices. If feed is a list, we
        assume the data has been splitted into multiple devices, the each
        element in the list will be copied to each device directly.

        For example, if the feed is a dict:
C
chengduoZH 已提交
174

Y
Yu Yang 已提交
175 176 177 178 179 180
        >>> exe = ParallelExecutor()
        >>> # the image will be splitted into devices. If there is two devices
        >>> # each device will process an image with shape (24, 1, 28, 28)
        >>> exe.run(feed={'image': numpy.random.random(size=(48, 1, 28, 28))})

        For example, if the feed is a list:
C
chengduoZH 已提交
181

Y
Yu Yang 已提交
182 183 184 185 186 187 188 189 190 191
        >>> exe = ParallelExecutor()
        >>> # each device will process each element in the list.
        >>> # the 1st device will process an image with shape (48, 1, 28, 28)
        >>> # the 2nd device will process an image with shape (32, 1, 28, 28)
        >>> #
        >>> # you can use exe.device_count to get the device number.
        >>> exe.run(feed=[{"image": numpy.random.random(size=(48, 1, 28, 28))},
        >>>               {"image": numpy.random.random(size=(32, 1, 28, 28))},
        >>>              ])

Y
Yu Yang 已提交
192 193
        Args:
            fetch_list(list): The fetched variable names
Y
Yu Yang 已提交
194 195 196
            feed(list|dict|None): The feed variables. If the feed is a dict,
                tensors in that dict will be splitted into each devices. If
                the feed is a list, each element of the list will be copied
C
chengduoZH 已提交
197
                to each device. Default None.
Y
Yu Yang 已提交
198
            feed_dict: Alias for feed parameter, for backward compatibility.
C
chengduoZH 已提交
199
                This parameter has been deprecated. Default None.
C
chengduo 已提交
200
            return_numpy(bool): Whether converts the fetched tensor to numpy.
201
                Default: True.
C
chengduoZH 已提交
202 203 204

        Returns:
            List: The fetched result list.
Y
Yu Yang 已提交
205

C
chengduoZH 已提交
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
        Raises:
            ValueError: If the feed is a list, but its length is not equal the
                length of active places, or its element's is not dict.

        NOTES:
            1. If the feed's type is dict, the number of data that feeds to
               ParallelExecutor must be bigger than active places. Otherwise,
               it will throw exception from C++ side. Special attention should be
               paid to check whether the last batch of the dataset is bigger
               than active places.
            2. If active places are more than one, the fetch results for each
               variable is a list, and each element of this list is the variable of
               respective active place.

        Examples:
            .. code-block:: python
Y
Yu Yang 已提交
222

C
chengduoZH 已提交
223 224 225 226 227
                pe = fluid.ParallelExecutor(use_cuda=use_cuda,
                                            loss_name=avg_cost.name,
                                            main_program=fluid.default_main_program())
                loss = pe.run(feed=feeder.feed(cur_batch),
                              fetch_list=[avg_cost.name]))
X
Xin Pan 已提交
228
        """
229
        if feed is None and feed_dict is not None:
J
JiayiFeng 已提交
230
            feed = feed_dict
231 232 233
            print(
                "`feed_dict` is deprecated. Please use `feed=`",
                file=sys.stderr)
Y
Yu Yang 已提交
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269

        if isinstance(feed, dict):
            feed_tensor_dict = dict()
            for feed_name in feed:
                feed_tensor = feed[feed_name]
                if not isinstance(feed_tensor, core.LoDTensor):
                    feed_tensor = core.LoDTensor()
                    # always set to CPU place, since the tensor need to be splitted
                    # it is fast in CPU
                    feed_tensor.set(feed[feed_name], core.CPUPlace())
                feed_tensor_dict[feed_name] = feed_tensor

            self.executor.feed_and_split_tensor_into_local_scopes(
                feed_tensor_dict)
        elif isinstance(feed, list) or isinstance(feed, tuple):
            if len(feed) != len(self._act_places):
                raise ValueError(
                    "Feed a list of tensor, the list should be the same size as places"
                )

            res = list()

            for i, each in enumerate(feed):
                if not isinstance(each, dict):
                    raise TypeError(
                        "Each element of feed list should be a dict")
                res_dict = dict()
                for feed_name in each:
                    tensor = each[feed_name]
                    if not isinstance(tensor, core.LoDTensor):
                        tmp = core.LoDTensor()
                        tmp.set(tensor, self._act_places[i])
                        tensor = tmp
                    res_dict[feed_name] = tensor
                res.append(res_dict)
            self.executor.feed_tensors_into_local_scopes(res)
X
Xin Pan 已提交
270

271
        fetch_var_name = '@FETCHED_VAR_NAME@'
Y
Yu Yang 已提交
272
        self.executor.run(fetch_list, fetch_var_name)
273
        arr = self.scope.find_var(fetch_var_name).get_lod_tensor_array()
274 275 276 277

        if self.is_dist:
            self.bcast_params()

C
chengduo 已提交
278 279 280
        if return_numpy:
            return executor.as_numpy(arr)

281
        return [arr[i] for i in range(len(arr))]
T
typhoonzero 已提交
282 283

    def bcast_params(self):
C
chengduoZH 已提交
284 285 286 287
        """
        Broadcast the parameters to other devices. It is used during
        distributed training.
        """
T
typhoonzero 已提交
288
        self.executor.bcast_params(set(self.persistable_vars))
Y
Yu Yang 已提交
289 290 291 292

    @property
    def device_count(self):
        return len(self._act_places)