det_keypoint_unite_infer.py 13.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
16
import json
17
import cv2
W
wangguanzhong 已提交
18
import math
19 20
import numpy as np
import paddle
W
wangguanzhong 已提交
21
import yaml
22

23
from det_keypoint_unite_utils import argsparser
24
from preprocess import decode_image
W
wangguanzhong 已提交
25 26 27
from infer import Detector, DetectorPicoDet, PredictConfig, print_arguments, get_test_images, bench_log
from keypoint_infer import KeyPointDetector, PredictConfig_KeyPoint
from visualize import visualize_pose
W
wangguanzhong 已提交
28 29
from benchmark_utils import PaddleInferBenchmark
from utils import get_current_memory_mb
30 31 32 33 34 35
from keypoint_postprocess import translate_to_ori_images

KEYPOINT_SUPPORT_MODELS = {
    'HigherHRNet': 'keypoint_bottomup',
    'HRNet': 'keypoint_topdown'
}
36 37


38
def predict_with_given_det(image, det_res, keypoint_detector,
39
                           keypoint_batch_size, run_benchmark):
40
    rec_images, records, det_rects = keypoint_detector.get_person_from_rect(
41
        image, det_res)
42 43 44
    keypoint_vector = []
    score_vector = []

W
wangguanzhong 已提交
45 46 47 48 49
    rect_vector = det_rects
    keypoint_results = keypoint_detector.predict_image(
        rec_images, run_benchmark, repeats=10, visual=False)
    keypoint_vector, score_vector = translate_to_ori_images(keypoint_results,
                                                            np.array(records))
50 51
    keypoint_res = {}
    keypoint_res['keypoint'] = [
W
wangguanzhong 已提交
52
        keypoint_vector.tolist(), score_vector.tolist()
53 54 55
    ] if len(keypoint_vector) > 0 else [[], []]
    keypoint_res['bbox'] = rect_vector
    return keypoint_res
56 57


W
wangguanzhong 已提交
58 59 60
def topdown_unite_predict(detector,
                          topdown_keypoint_detector,
                          image_list,
61 62
                          keypoint_batch_size=1,
                          save_res=False):
W
wangguanzhong 已提交
63
    det_timer = detector.get_timer()
64
    store_res = []
65
    for i, img_file in enumerate(image_list):
W
wangguanzhong 已提交
66 67
        # Decode image in advance in det + pose prediction
        det_timer.preprocess_time_s.start()
68
        image, _ = decode_image(img_file, {})
W
wangguanzhong 已提交
69 70 71
        det_timer.preprocess_time_s.end()

        if FLAGS.run_benchmark:
W
wangguanzhong 已提交
72 73 74
            results = detector.predict_image(
                [image], run_benchmark=True, repeats=10)

W
wangguanzhong 已提交
75 76 77 78 79
            cm, gm, gu = get_current_memory_mb()
            detector.cpu_mem += cm
            detector.gpu_mem += gm
            detector.gpu_util += gu
        else:
W
wangguanzhong 已提交
80
            results = detector.predict_image([image], visual=False)
81 82 83 84 85 86 87
        results = detector.filter_box(results, FLAGS.det_threshold)
        if results['boxes_num'] > 0:
            keypoint_res = predict_with_given_det(
                image, results, topdown_keypoint_detector, keypoint_batch_size,
                FLAGS.run_benchmark)

            if save_res:
J
JYChen 已提交
88
                save_name = img_file if isinstance(img_file, str) else i
89
                store_res.append([
J
JYChen 已提交
90
                    save_name, keypoint_res['bbox'],
91 92 93 94 95
                    [keypoint_res['keypoint'][0], keypoint_res['keypoint'][1]]
                ])
        else:
            results["keypoint"] = [[], []]
            keypoint_res = results
W
wangguanzhong 已提交
96 97 98 99 100 101 102 103
        if FLAGS.run_benchmark:
            cm, gm, gu = get_current_memory_mb()
            topdown_keypoint_detector.cpu_mem += cm
            topdown_keypoint_detector.gpu_mem += gm
            topdown_keypoint_detector.gpu_util += gu
        else:
            if not os.path.exists(FLAGS.output_dir):
                os.makedirs(FLAGS.output_dir)
W
wangguanzhong 已提交
104
            visualize_pose(
W
wangguanzhong 已提交
105 106
                img_file,
                keypoint_res,
W
wangguanzhong 已提交
107
                visual_thresh=FLAGS.keypoint_threshold,
W
wangguanzhong 已提交
108
                save_dir=FLAGS.output_dir)
109 110 111 112 113 114 115 116 117 118
    if save_res:
        """
        1) store_res: a list of image_data
        2) image_data: [imageid, rects, [keypoints, scores]]
        3) rects: list of rect [xmin, ymin, xmax, ymax]
        4) keypoints: 17(joint numbers)*[x, y, conf], total 51 data in list
        5) scores: mean of all joint conf
        """
        with open("det_keypoint_unite_image_results.json", 'w') as wf:
            json.dump(store_res, wf, indent=4)
119 120


W
wangguanzhong 已提交
121 122 123
def topdown_unite_predict_video(detector,
                                topdown_keypoint_detector,
                                camera_id,
124 125
                                keypoint_batch_size=1,
                                save_res=False):
126
    video_name = 'output.mp4'
127 128 129 130
    if camera_id != -1:
        capture = cv2.VideoCapture(camera_id)
    else:
        capture = cv2.VideoCapture(FLAGS.video_file)
W
wangguanzhong 已提交
131
        video_name = os.path.split(FLAGS.video_file)[-1]
132
    # Get Video info : resolution, fps, frame count
133 134
    width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
    height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
135 136 137 138
    fps = int(capture.get(cv2.CAP_PROP_FPS))
    frame_count = int(capture.get(cv2.CAP_PROP_FRAME_COUNT))
    print("fps: %d, frame_count: %d" % (fps, frame_count))

139 140 141
    if not os.path.exists(FLAGS.output_dir):
        os.makedirs(FLAGS.output_dir)
    out_path = os.path.join(FLAGS.output_dir, video_name)
142
    fourcc = cv2.VideoWriter_fourcc(* 'mp4v')
143
    writer = cv2.VideoWriter(out_path, fourcc, fps, (width, height))
144
    index = 0
145
    store_res = []
146 147 148
    previous_keypoints = None
    keypoint_smoothing = KeypointSmoothing(width, height, filter_type=FLAGS.filter_type, alpha=0.8, beta=1)

149 150 151 152 153
    while (1):
        ret, frame = capture.read()
        if not ret:
            break
        index += 1
154
        print('detect frame: %d' % (index))
155 156

        frame2 = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
W
wangguanzhong 已提交
157 158

        results = detector.predict_image([frame2], visual=False)
159 160 161 162
        results = detector.filter_box(results, FLAGS.det_threshold)
        if results['boxes_num'] == 0:
            writer.write(frame)
            continue
163 164 165

        keypoint_res = predict_with_given_det(
            frame2, results, topdown_keypoint_detector, keypoint_batch_size,
166
            FLAGS.run_benchmark)
167 168 169 170 171 172 173
        
        if FLAGS.smooth:
            current_keypoints = np.array(keypoint_res['keypoint'][0][0])
            smooth_keypoints = keypoint_smoothing.smooth_process(previous_keypoints, current_keypoints)
            previous_keypoints = smooth_keypoints

            keypoint_res['keypoint'][0][0] = smooth_keypoints.tolist()
174

W
wangguanzhong 已提交
175
        im = visualize_pose(
176 177
            frame,
            keypoint_res,
W
wangguanzhong 已提交
178
            visual_thresh=FLAGS.keypoint_threshold,
179
            returnimg=True)
180

181 182 183 184 185
        if save_res:
            store_res.append([
                index, keypoint_res['bbox'],
                [keypoint_res['keypoint'][0], keypoint_res['keypoint'][1]]
            ])
186 187 188 189 190 191 192

        writer.write(im)
        if camera_id != -1:
            cv2.imshow('Mask Detection', im)
            if cv2.waitKey(1) & 0xFF == ord('q'):
                break
    writer.release()
W
wangguanzhong 已提交
193
    print('output_video saved to: {}'.format(out_path))
194 195 196 197 198 199 200 201 202 203
    if save_res:
        """
        1) store_res: a list of frame_data
        2) frame_data: [frameid, rects, [keypoints, scores]]
        3) rects: list of rect [xmin, ymin, xmax, ymax]
        4) keypoints: 17(joint numbers)*[x, y, conf], total 51 data in list
        5) scores: mean of all joint conf
        """
        with open("det_keypoint_unite_video_results.json", 'w') as wf:
            json.dump(store_res, wf, indent=4)
204 205


206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
class KeypointSmoothing(object):
    # The following code are modified from:
    # https://github.com/610265158/Peppa_Pig_Face_Engine/blob/7bb1066ad3fbb12697924ba7f9287bf198c15232/lib/core/LK/lk.py
    
    def __init__(self, width, height, filter_type, alpha=0.5, fc_d=1, fc_min=1, beta=0):
        super(KeypointSmoothing, self).__init__()
        self.image_width = width
        self.image_height = height
        self.threshold = [0.005, 0.005, 0.005, 0.005, 0.005, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01]
        self.filter_type = filter_type
        self.alpha = alpha
        self.dx_prev_hat = None
        self.x_prev_hat = None
        self.fc_d = fc_d
        self.fc_min = fc_min
        self.beta = beta
        
        if self.filter_type == 'one_euro':
            self.smooth_func = self.one_euro_filter
        elif self.filter_type == 'ema':
            self.smooth_func = self.exponential_smoothing
        else:
            raise ValueError('filter type must be one_euro or ema')

    def smooth_process(self, previous_keypoints, current_keypoints):
        if previous_keypoints is None:
            previous_keypoints = current_keypoints
            result = current_keypoints
        else:
            result = []
            num_keypoints = len(current_keypoints)
            for i in range(num_keypoints):
                result.append(self.smooth(previous_keypoints[i], current_keypoints[i], self.threshold[i]))
        return np.array(result)


    def smooth(self, previous_keypoint, current_keypoint, threshold):
        distance = np.sqrt(np.square((current_keypoint[0] - previous_keypoint[0]) / self.image_width) + np.square((current_keypoint[1] - previous_keypoint[1]) / self.image_height))
        if distance < threshold:
            result = previous_keypoint
        else:
            result = self.smooth_func(previous_keypoint, current_keypoint)
        return result


    def one_euro_filter(self, x_prev, x_cur):
        te = 1
        self.alpha = self.smoothing_factor(te, self.fc_d)
        if self.x_prev_hat is None:
            self.x_prev_hat = x_prev
        dx_cur = (x_cur - self.x_prev_hat) / te
        if self.dx_prev_hat is None:
            self.dx_prev_hat = 0
        dx_cur_hat = self.exponential_smoothing(self.dx_prev_hat, dx_cur)
        
        fc = self.fc_min + self.beta * np.abs(dx_cur_hat)
        self.alpha = self.smoothing_factor(te, fc)
        x_cur_hat = self.exponential_smoothing(self.x_prev_hat, x_cur)
        self.dx_prev_hat = dx_cur_hat
        self.x_prev_hat = x_cur_hat
        return x_cur_hat


    def smoothing_factor(self, te, fc):
        r = 2 * math.pi * fc * te
        return r / (r + 1)
    
    def exponential_smoothing(self, x_prev, x_cur):
        return self.alpha * x_cur + (1 - self.alpha) * x_prev


277
def main():
W
wangguanzhong 已提交
278 279 280 281
    deploy_file = os.path.join(FLAGS.det_model_dir, 'infer_cfg.yml')
    with open(deploy_file) as f:
        yml_conf = yaml.safe_load(f)
    arch = yml_conf['arch']
282
    detector_func = 'Detector'
W
wangguanzhong 已提交
283
    if arch == 'PicoDet':
284 285
        detector_func = 'DetectorPicoDet'

W
wangguanzhong 已提交
286
    detector = eval(detector_func)(FLAGS.det_model_dir,
287 288 289 290 291 292 293
                                   device=FLAGS.device,
                                   run_mode=FLAGS.run_mode,
                                   trt_min_shape=FLAGS.trt_min_shape,
                                   trt_max_shape=FLAGS.trt_max_shape,
                                   trt_opt_shape=FLAGS.trt_opt_shape,
                                   trt_calib_mode=FLAGS.trt_calib_mode,
                                   cpu_threads=FLAGS.cpu_threads,
W
wangguanzhong 已提交
294 295
                                   enable_mkldnn=FLAGS.enable_mkldnn,
                                   threshold=FLAGS.det_threshold)
296

W
wangguanzhong 已提交
297
    topdown_keypoint_detector = KeyPointDetector(
298
        FLAGS.keypoint_model_dir,
G
Guanghua Yu 已提交
299
        device=FLAGS.device,
300
        run_mode=FLAGS.run_mode,
301
        batch_size=FLAGS.keypoint_batch_size,
302 303 304 305 306
        trt_min_shape=FLAGS.trt_min_shape,
        trt_max_shape=FLAGS.trt_max_shape,
        trt_opt_shape=FLAGS.trt_opt_shape,
        trt_calib_mode=FLAGS.trt_calib_mode,
        cpu_threads=FLAGS.cpu_threads,
Z
zhiboniu 已提交
307 308
        enable_mkldnn=FLAGS.enable_mkldnn,
        use_dark=FLAGS.use_dark)
W
wangguanzhong 已提交
309 310 311
    keypoint_arch = topdown_keypoint_detector.pred_config.arch
    assert KEYPOINT_SUPPORT_MODELS[
        keypoint_arch] == 'keypoint_topdown', 'Detection-Keypoint unite inference only supports topdown models.'
312 313 314 315

    # predict from video file or camera video stream
    if FLAGS.video_file is not None or FLAGS.camera_id != -1:
        topdown_unite_predict_video(detector, topdown_keypoint_detector,
316 317
                                    FLAGS.camera_id, FLAGS.keypoint_batch_size,
                                    FLAGS.save_res)
318 319 320
    else:
        # predict from image
        img_list = get_test_images(FLAGS.image_dir, FLAGS.image_file)
W
wangguanzhong 已提交
321
        topdown_unite_predict(detector, topdown_keypoint_detector, img_list,
322
                              FLAGS.keypoint_batch_size, FLAGS.save_res)
W
wangguanzhong 已提交
323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
        if not FLAGS.run_benchmark:
            detector.det_times.info(average=True)
            topdown_keypoint_detector.det_times.info(average=True)
        else:
            mode = FLAGS.run_mode
            det_model_dir = FLAGS.det_model_dir
            det_model_info = {
                'model_name': det_model_dir.strip('/').split('/')[-1],
                'precision': mode.split('_')[-1]
            }
            bench_log(detector, img_list, det_model_info, name='Det')
            keypoint_model_dir = FLAGS.keypoint_model_dir
            keypoint_model_info = {
                'model_name': keypoint_model_dir.strip('/').split('/')[-1],
                'precision': mode.split('_')[-1]
            }
            bench_log(topdown_keypoint_detector, img_list, keypoint_model_info,
                      FLAGS.keypoint_batch_size, 'KeyPoint')
341 342 343 344 345 346 347


if __name__ == '__main__':
    paddle.enable_static()
    parser = argsparser()
    FLAGS = parser.parse_args()
    print_arguments(FLAGS)
G
Guanghua Yu 已提交
348 349 350
    FLAGS.device = FLAGS.device.upper()
    assert FLAGS.device in ['CPU', 'GPU', 'XPU'
                            ], "device should be CPU, GPU or XPU"
351 352

    main()