yolo_loss.py 15.5 KB
Newer Older
K
Kaipeng Deng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from paddle import fluid
from ppdet.core.workspace import register
W
wangguanzhong 已提交
21 22 23 24
try:
    from collections.abc import Sequence
except Exception:
    from collections import Sequence
K
Kaipeng Deng 已提交
25

26 27 28
import logging
logger = logging.getLogger(__name__)

K
Kaipeng Deng 已提交
29 30 31 32 33 34 35 36 37
__all__ = ['YOLOv3Loss']


@register
class YOLOv3Loss(object):
    """
    Combined loss for YOLOv3 network

    Args:
38
        train_batch_size (int): training batch size
K
Kaipeng Deng 已提交
39 40 41 42 43
        ignore_thresh (float): threshold to ignore confidence loss
        label_smooth (bool): whether to use label smoothing
        use_fine_grained_loss (bool): whether use fine grained YOLOv3 loss
                                      instead of fluid.layers.yolov3_loss
    """
L
lxastro 已提交
44
    __inject__ = ['iou_loss', 'iou_aware_loss']
45
    __shared__ = ['use_fine_grained_loss', 'train_batch_size']
K
Kaipeng Deng 已提交
46

47 48 49
    def __init__(
            self,
            train_batch_size=8,
50
            batch_size=-1,  # stub for backward compatable
51 52 53 54 55 56 57 58
            ignore_thresh=0.7,
            label_smooth=True,
            use_fine_grained_loss=False,
            iou_loss=None,
            iou_aware_loss=None,
            downsample=[32, 16, 8],
            scale_x_y=1.,
            match_score=False):
59
        self._train_batch_size = train_batch_size
K
Kaipeng Deng 已提交
60 61 62
        self._ignore_thresh = ignore_thresh
        self._label_smooth = label_smooth
        self._use_fine_grained_loss = use_fine_grained_loss
C
CodesFarmer 已提交
63
        self._iou_loss = iou_loss
L
lxastro 已提交
64
        self._iou_aware_loss = iou_aware_loss
W
wangguanzhong 已提交
65
        self.downsample = downsample
W
wangguanzhong 已提交
66
        self.scale_x_y = scale_x_y
W
wangguanzhong 已提交
67
        self.match_score = match_score
K
Kaipeng Deng 已提交
68

69 70 71 72 73
        if batch_size != -1:
            logger.warn(
                "config YOLOv3Loss.batch_size is deprecated, "
                "training batch size should be set by TrainReader.batch_size")

K
Kaipeng Deng 已提交
74 75 76 77
    def __call__(self, outputs, gt_box, gt_label, gt_score, targets, anchors,
                 anchor_masks, mask_anchors, num_classes, prefix_name):
        if self._use_fine_grained_loss:
            return self._get_fine_grained_loss(
78
                outputs, targets, gt_box, self._train_batch_size, num_classes,
K
Kaipeng Deng 已提交
79 80 81 82
                mask_anchors, self._ignore_thresh)
        else:
            losses = []
            for i, output in enumerate(outputs):
W
wangguanzhong 已提交
83 84
                scale_x_y = self.scale_x_y if not isinstance(
                    self.scale_x_y, Sequence) else self.scale_x_y[i]
K
Kaipeng Deng 已提交
85 86 87 88 89 90 91 92 93 94
                anchor_mask = anchor_masks[i]
                loss = fluid.layers.yolov3_loss(
                    x=output,
                    gt_box=gt_box,
                    gt_label=gt_label,
                    gt_score=gt_score,
                    anchors=anchors,
                    anchor_mask=anchor_mask,
                    class_num=num_classes,
                    ignore_thresh=self._ignore_thresh,
W
wangguanzhong 已提交
95
                    downsample_ratio=self.downsample[i],
K
Kaipeng Deng 已提交
96
                    use_label_smooth=self._label_smooth,
W
wangguanzhong 已提交
97
                    scale_x_y=scale_x_y,
K
Kaipeng Deng 已提交
98
                    name=prefix_name + "yolo_loss" + str(i))
W
wangguanzhong 已提交
99

K
Kaipeng Deng 已提交
100 101 102 103
                losses.append(fluid.layers.reduce_mean(loss))

            return {'loss': sum(losses)}

104 105 106 107
    def _get_fine_grained_loss(self,
                               outputs,
                               targets,
                               gt_box,
108
                               train_batch_size,
109 110 111 112
                               num_classes,
                               mask_anchors,
                               ignore_thresh,
                               eps=1.e-10):
K
Kaipeng Deng 已提交
113 114 115 116 117 118 119 120
        """
        Calculate fine grained YOLOv3 loss

        Args:
            outputs ([Variables]): List of Variables, output of backbone stages
            targets ([Variables]): List of Variables, The targets for yolo
                                   loss calculatation.
            gt_box (Variable): The ground-truth boudding boxes.
121
            train_batch_size (int): The training batch size
K
Kaipeng Deng 已提交
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
            num_classes (int): class num of dataset
            mask_anchors ([[float]]): list of anchors in each output layer
            ignore_thresh (float): prediction bbox overlap any gt_box greater
                                   than ignore_thresh, objectness loss will
                                   be ignored.

        Returns:
            Type: dict
                xy_loss (Variable): YOLOv3 (x, y) coordinates loss
                wh_loss (Variable): YOLOv3 (w, h) coordinates loss
                obj_loss (Variable): YOLOv3 objectness score loss
                cls_loss (Variable): YOLOv3 classification loss

        """

        assert len(outputs) == len(targets), \
            "YOLOv3 output layer number not equal target number"

L
lxastro 已提交
140 141 142 143 144
        loss_xys, loss_whs, loss_objs, loss_clss = [], [], [], []
        if self._iou_loss is not None:
            loss_ious = []
        if self._iou_aware_loss is not None:
            loss_iou_awares = []
K
Kaipeng Deng 已提交
145 146
        for i, (output, target,
                anchors) in enumerate(zip(outputs, targets, mask_anchors)):
W
wangguanzhong 已提交
147
            downsample = self.downsample[i]
K
Kaipeng Deng 已提交
148
            an_num = len(anchors) // 2
L
lxastro 已提交
149 150
            if self._iou_aware_loss is not None:
                ioup, output = self._split_ioup(output, an_num, num_classes)
K
Kaipeng Deng 已提交
151 152 153 154 155
            x, y, w, h, obj, cls = self._split_output(output, an_num,
                                                      num_classes)
            tx, ty, tw, th, tscale, tobj, tcls = self._split_target(target)

            tscale_tobj = tscale * tobj
K
Kaipeng Deng 已提交
156 157 158 159 160 161 162 163 164 165 166 167

            scale_x_y = self.scale_x_y if not isinstance(
                self.scale_x_y, Sequence) else self.scale_x_y[i]

            if (abs(scale_x_y - 1.0) < eps):
                loss_x = fluid.layers.sigmoid_cross_entropy_with_logits(
                    x, tx) * tscale_tobj
                loss_x = fluid.layers.reduce_sum(loss_x, dim=[1, 2, 3])
                loss_y = fluid.layers.sigmoid_cross_entropy_with_logits(
                    y, ty) * tscale_tobj
                loss_y = fluid.layers.reduce_sum(loss_y, dim=[1, 2, 3])
            else:
168 169 170 171
                dx = scale_x_y * fluid.layers.sigmoid(x) - 0.5 * (scale_x_y -
                                                                  1.0)
                dy = scale_x_y * fluid.layers.sigmoid(y) - 0.5 * (scale_x_y -
                                                                  1.0)
K
Kaipeng Deng 已提交
172 173 174 175 176
                loss_x = fluid.layers.abs(dx - tx) * tscale_tobj
                loss_x = fluid.layers.reduce_sum(loss_x, dim=[1, 2, 3])
                loss_y = fluid.layers.abs(dy - ty) * tscale_tobj
                loss_y = fluid.layers.reduce_sum(loss_y, dim=[1, 2, 3])

K
Kaipeng Deng 已提交
177 178 179 180 181
            # NOTE: we refined loss function of (w, h) as L1Loss
            loss_w = fluid.layers.abs(w - tw) * tscale_tobj
            loss_w = fluid.layers.reduce_sum(loss_w, dim=[1, 2, 3])
            loss_h = fluid.layers.abs(h - th) * tscale_tobj
            loss_h = fluid.layers.reduce_sum(loss_h, dim=[1, 2, 3])
C
CodesFarmer 已提交
182
            if self._iou_loss is not None:
183 184 185 186 187 188 189 190 191 192 193 194 195
                loss_iou = self._iou_loss(
                    x,
                    y,
                    w,
                    h,
                    tx,
                    ty,
                    tw,
                    th,
                    anchors,
                    downsample,
                    self._train_batch_size,
                    scale_x_y=scale_x_y)
C
CodesFarmer 已提交
196 197 198
                loss_iou = loss_iou * tscale_tobj
                loss_iou = fluid.layers.reduce_sum(loss_iou, dim=[1, 2, 3])
                loss_ious.append(fluid.layers.reduce_mean(loss_iou))
K
Kaipeng Deng 已提交
199

L
lxastro 已提交
200 201 202
            if self._iou_aware_loss is not None:
                loss_iou_aware = self._iou_aware_loss(
                    ioup, x, y, w, h, tx, ty, tw, th, anchors, downsample,
203
                    self._train_batch_size, scale_x_y)
L
lxastro 已提交
204 205 206 207 208
                loss_iou_aware = loss_iou_aware * tobj
                loss_iou_aware = fluid.layers.reduce_sum(
                    loss_iou_aware, dim=[1, 2, 3])
                loss_iou_awares.append(fluid.layers.reduce_mean(loss_iou_aware))

K
Kaipeng Deng 已提交
209
            loss_obj_pos, loss_obj_neg = self._calc_obj_loss(
210
                output, obj, tobj, gt_box, self._train_batch_size, anchors,
W
wangguanzhong 已提交
211
                num_classes, downsample, self._ignore_thresh, scale_x_y)
K
Kaipeng Deng 已提交
212 213 214 215 216 217 218 219 220 221 222

            loss_cls = fluid.layers.sigmoid_cross_entropy_with_logits(cls, tcls)
            loss_cls = fluid.layers.elementwise_mul(loss_cls, tobj, axis=0)
            loss_cls = fluid.layers.reduce_sum(loss_cls, dim=[1, 2, 3, 4])

            loss_xys.append(fluid.layers.reduce_mean(loss_x + loss_y))
            loss_whs.append(fluid.layers.reduce_mean(loss_w + loss_h))
            loss_objs.append(
                fluid.layers.reduce_mean(loss_obj_pos + loss_obj_neg))
            loss_clss.append(fluid.layers.reduce_mean(loss_cls))

C
CodesFarmer 已提交
223
        losses_all = {
K
Kaipeng Deng 已提交
224 225 226 227 228
            "loss_xy": fluid.layers.sum(loss_xys),
            "loss_wh": fluid.layers.sum(loss_whs),
            "loss_obj": fluid.layers.sum(loss_objs),
            "loss_cls": fluid.layers.sum(loss_clss),
        }
C
CodesFarmer 已提交
229 230
        if self._iou_loss is not None:
            losses_all["loss_iou"] = fluid.layers.sum(loss_ious)
L
lxastro 已提交
231 232
        if self._iou_aware_loss is not None:
            losses_all["loss_iou_aware"] = fluid.layers.sum(loss_iou_awares)
C
CodesFarmer 已提交
233
        return losses_all
K
Kaipeng Deng 已提交
234

L
lxastro 已提交
235 236 237 238 239 240 241 242 243 244 245 246 247 248
    def _split_ioup(self, output, an_num, num_classes):
        """
        Split output feature map to output, predicted iou
        along channel dimension
        """
        ioup = fluid.layers.slice(output, axes=[1], starts=[0], ends=[an_num])
        ioup = fluid.layers.sigmoid(ioup)
        oriout = fluid.layers.slice(
            output,
            axes=[1],
            starts=[an_num],
            ends=[an_num * (num_classes + 6)])
        return (ioup, oriout)

K
Kaipeng Deng 已提交
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
    def _split_output(self, output, an_num, num_classes):
        """
        Split output feature map to x, y, w, h, objectness, classification
        along channel dimension
        """
        x = fluid.layers.strided_slice(
            output,
            axes=[1],
            starts=[0],
            ends=[output.shape[1]],
            strides=[5 + num_classes])
        y = fluid.layers.strided_slice(
            output,
            axes=[1],
            starts=[1],
            ends=[output.shape[1]],
            strides=[5 + num_classes])
        w = fluid.layers.strided_slice(
            output,
            axes=[1],
            starts=[2],
            ends=[output.shape[1]],
            strides=[5 + num_classes])
        h = fluid.layers.strided_slice(
            output,
            axes=[1],
            starts=[3],
            ends=[output.shape[1]],
            strides=[5 + num_classes])
        obj = fluid.layers.strided_slice(
            output,
            axes=[1],
            starts=[4],
            ends=[output.shape[1]],
            strides=[5 + num_classes])
        clss = []
        stride = output.shape[1] // an_num
        for m in range(an_num):
            clss.append(
                fluid.layers.slice(
                    output,
                    axes=[1],
                    starts=[stride * m + 5],
                    ends=[stride * m + 5 + num_classes]))
        cls = fluid.layers.transpose(
            fluid.layers.stack(
                clss, axis=1), perm=[0, 1, 3, 4, 2])

        return (x, y, w, h, obj, cls)

    def _split_target(self, target):
        """
        split target to x, y, w, h, objectness, classification
        along dimension 2

        target is in shape [N, an_num, 6 + class_num, H, W]
        """
        tx = target[:, :, 0, :, :]
        ty = target[:, :, 1, :, :]
        tw = target[:, :, 2, :, :]
        th = target[:, :, 3, :, :]

        tscale = target[:, :, 4, :, :]
        tobj = target[:, :, 5, :, :]

        tcls = fluid.layers.transpose(
            target[:, :, 6:, :, :], perm=[0, 1, 3, 4, 2])
        tcls.stop_gradient = True

        return (tx, ty, tw, th, tscale, tobj, tcls)

    def _calc_obj_loss(self, output, obj, tobj, gt_box, batch_size, anchors,
W
wangguanzhong 已提交
321
                       num_classes, downsample, ignore_thresh, scale_x_y):
K
Kaipeng Deng 已提交
322 323 324 325 326
        # A prediction bbox overlap any gt_bbox over ignore_thresh, 
        # objectness loss will be ignored, process as follows:

        # 1. get pred bbox, which is same with YOLOv3 infer mode, use yolo_box here
        # NOTE: img_size is set as 1.0 to get noramlized pred bbox
W
wangguanzhong 已提交
327
        bbox, prob = fluid.layers.yolo_box(
K
Kaipeng Deng 已提交
328 329 330 331 332 333 334
            x=output,
            img_size=fluid.layers.ones(
                shape=[batch_size, 2], dtype="int32"),
            anchors=anchors,
            class_num=num_classes,
            conf_thresh=0.,
            downsample_ratio=downsample,
W
wangguanzhong 已提交
335 336
            clip_bbox=False,
            scale_x_y=scale_x_y)
337

K
Kaipeng Deng 已提交
338 339 340 341 342 343 344 345
        # 2. split pred bbox and gt bbox by sample, calculate IoU between pred bbox
        #    and gt bbox in each sample
        if batch_size > 1:
            preds = fluid.layers.split(bbox, batch_size, dim=0)
            gts = fluid.layers.split(gt_box, batch_size, dim=0)
        else:
            preds = [bbox]
            gts = [gt_box]
W
wangguanzhong 已提交
346
            probs = [prob]
K
Kaipeng Deng 已提交
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
        ious = []
        for pred, gt in zip(preds, gts):

            def box_xywh2xyxy(box):
                x = box[:, 0]
                y = box[:, 1]
                w = box[:, 2]
                h = box[:, 3]
                return fluid.layers.stack(
                    [
                        x - w / 2.,
                        y - h / 2.,
                        x + w / 2.,
                        y + h / 2.,
                    ], axis=1)

            pred = fluid.layers.squeeze(pred, axes=[0])
            gt = box_xywh2xyxy(fluid.layers.squeeze(gt, axes=[0]))
            ious.append(fluid.layers.iou_similarity(pred, gt))
366

W
wangguanzhong 已提交
367
        iou = fluid.layers.stack(ious, axis=0)
K
Kaipeng Deng 已提交
368 369
        # 3. Get iou_mask by IoU between gt bbox and prediction bbox,
        #    Get obj_mask by tobj(holds gt_score), calculate objectness loss
370

K
Kaipeng Deng 已提交
371 372
        max_iou = fluid.layers.reduce_max(iou, dim=-1)
        iou_mask = fluid.layers.cast(max_iou <= ignore_thresh, dtype="float32")
W
wangguanzhong 已提交
373 374 375
        if self.match_score:
            max_prob = fluid.layers.reduce_max(prob, dim=-1)
            iou_mask = iou_mask * fluid.layers.cast(
376
                max_prob <= 0.25, dtype="float32")
K
Kaipeng Deng 已提交
377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
        output_shape = fluid.layers.shape(output)
        an_num = len(anchors) // 2
        iou_mask = fluid.layers.reshape(iou_mask, (-1, an_num, output_shape[2],
                                                   output_shape[3]))
        iou_mask.stop_gradient = True

        # NOTE: tobj holds gt_score, obj_mask holds object existence mask
        obj_mask = fluid.layers.cast(tobj > 0., dtype="float32")
        obj_mask.stop_gradient = True

        # For positive objectness grids, objectness loss should be calculated
        # For negative objectness grids, objectness loss is calculated only iou_mask == 1.0
        loss_obj = fluid.layers.sigmoid_cross_entropy_with_logits(obj, obj_mask)
        loss_obj_pos = fluid.layers.reduce_sum(loss_obj * tobj, dim=[1, 2, 3])
        loss_obj_neg = fluid.layers.reduce_sum(
            loss_obj * (1.0 - obj_mask) * iou_mask, dim=[1, 2, 3])

        return loss_obj_pos, loss_obj_neg