picodet_s_320_pedestrian.yml 3.4 KB
Newer Older
J
JYChen 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
use_gpu: true
log_iter: 20
save_dir: output
snapshot_epoch: 1
print_flops: false
pretrain_weights: https://paddledet.bj.bcebos.com/models/pretrained/ESNet_x0_75_pretrained.pdparams
weights: output/picodet_s_320_pedestrian/model_final
find_unused_parameters: True
use_ema: true
cycle_epoch: 40
snapshot_epoch: 10
epoch: 300
metric: COCO
num_classes: 1
15 16 17 18 19
# Exporting the model
export:
  post_process: False  # Whether post-processing is included in the network when export model.
  nms: False           # Whether NMS is included in the network when export model.
  benchmark: False    # It is used to testing model performance, if set `True`, post-process and NMS will not be exported.
J
JYChen 已提交
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148

architecture: PicoDet

PicoDet:
  backbone: ESNet
  neck: CSPPAN
  head: PicoHead

ESNet:
  scale: 0.75
  feature_maps: [4, 11, 14]
  act: hard_swish
  channel_ratio: [0.875, 0.5, 0.5, 0.5, 0.625, 0.5, 0.625, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5]

CSPPAN:
  out_channels: 96
  use_depthwise: True
  num_csp_blocks: 1
  num_features: 4

PicoHead:
  conv_feat:
    name: PicoFeat
    feat_in: 96
    feat_out: 96
    num_convs: 2
    num_fpn_stride: 4
    norm_type: bn
    share_cls_reg: True
  fpn_stride: [8, 16, 32, 64]
  feat_in_chan: 96
  prior_prob: 0.01
  reg_max: 7
  cell_offset: 0.5
  loss_class:
    name: VarifocalLoss
    use_sigmoid: True
    iou_weighted: True
    loss_weight: 1.0
  loss_dfl:
    name: DistributionFocalLoss
    loss_weight: 0.25
  loss_bbox:
    name: GIoULoss
    loss_weight: 2.0
  assigner:
    name: SimOTAAssigner
    candidate_topk: 10
    iou_weight: 6
  nms:
    name: MultiClassNMS
    nms_top_k: 1000
    keep_top_k: 100
    score_threshold: 0.025
    nms_threshold: 0.6

LearningRate:
  base_lr: 0.4
  schedulers:
  - !CosineDecay
    max_epochs: 300
  - !LinearWarmup
    start_factor: 0.1
    steps: 300

OptimizerBuilder:
  optimizer:
    momentum: 0.9
    type: Momentum
  regularizer:
    factor: 0.00004
    type: L2

TrainDataset:
  !COCODataSet
    image_dir: ""
    anno_path: aic_coco_train_cocoformat.json
    dataset_dir: dataset
    data_fields: ['image', 'gt_bbox', 'gt_class', 'is_crowd']

EvalDataset:
  !COCODataSet
    image_dir: val2017
    anno_path: annotations/instances_val2017.json
    dataset_dir: dataset/coco

TestDataset:
  !ImageFolder
    anno_path: annotations/instances_val2017.json

worker_num: 8
TrainReader:
  sample_transforms:
  - Decode: {}
  - RandomCrop: {}
  - RandomFlip: {prob: 0.5}
  - RandomDistort: {}
  batch_transforms:
  - BatchRandomResize: {target_size: [256, 288, 320, 352, 384], random_size: True, random_interp: True, keep_ratio: False}
  - NormalizeImage: {is_scale: true, mean: [0.485,0.456,0.406], std: [0.229, 0.224,0.225]}
  - Permute: {}
  batch_size: 128
  shuffle: true
  drop_last: true
  collate_batch: false

EvalReader:
  sample_transforms:
  - Decode: {}
  - Resize: {interp: 2, target_size: [320, 320], keep_ratio: False}
  - NormalizeImage: {is_scale: true, mean: [0.485,0.456,0.406], std: [0.229, 0.224,0.225]}
  - Permute: {}
  batch_transforms:
  - PadBatch: {pad_to_stride: 32}
  batch_size: 8
  shuffle: false

TestReader:
  inputs_def:
    image_shape: [1, 3, 320, 320]
  sample_transforms:
  - Decode: {}
  - Resize: {interp: 2, target_size: [320, 320], keep_ratio: False}
  - NormalizeImage: {is_scale: true, mean: [0.485,0.456,0.406], std: [0.229, 0.224,0.225]}
  - Permute: {}
  batch_transforms:
  - PadBatch: {pad_to_stride: 32}
  batch_size: 1
  shuffle: false