elementwise_compute_test.cc 10.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/lite/kernels/arm/elementwise_compute.h"
#include <gtest/gtest.h>
#include <string>
#include <vector>
#include "paddle/fluid/lite/core/op_registry.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace arm {

TEST(elementwise_add_arm, retrive_op) {
  auto elementwise_add =
      KernelRegistry::Global().Create<TARGET(kARM), PRECISION(kFloat)>(
          "elementwise_add");
  ASSERT_FALSE(elementwise_add.empty());
  ASSERT_TRUE(elementwise_add.front());
}

TEST(elementwise_add_arm, init) {
  ElementwiseAddCompute elementwise_add;
  ASSERT_EQ(elementwise_add.precision(), PRECISION(kFloat));
  ASSERT_EQ(elementwise_add.target(), TARGET(kARM));
}

template <typename dtype>
void elementwise_compute_ref(const operators::ElementwiseParam& param,
                             const std::string elt_type,
                             const std::string act_type) {
  const dtype* x_data = param.X->data<const dtype>();
  const dtype* y_data = param.Y->data<const dtype>();
  dtype* out_data = param.Out->mutable_data<dtype>();
  auto x_dims = param.X->dims();
  auto y_dims = param.Y->dims();
  int axis = param.axis;
  if (axis < 0) {
    axis = x_dims.size() - y_dims.size();
  }
  int batch = 1;
  int channels = 1;
  int num = 1;
  for (int i = 0; i < axis; ++i) {
    batch *= x_dims[i];
  }
  for (int i = 0; i < y_dims.size(); ++i) {
    channels *= y_dims[i];
  }
  for (int i = y_dims.size() + axis; i < x_dims.size(); ++i) {
    num *= x_dims[i];
  }
  // do elementwise add/sub/max...
  if (elt_type == "add") {
    for (int i = 0; i < batch; ++i) {
      for (int j = 0; j < channels; ++j) {
        int offset = (i * channels + j) * num;
        const dtype* din_ptr = x_data + offset;
        const dtype diny_data = y_data[j];
        dtype* dout_ptr = out_data + offset;
        for (int k = 0; k < num; ++k) {
          *dout_ptr = *din_ptr + diny_data;
          dout_ptr++;
          din_ptr++;
        }
      }
    }
  } else if (elt_type == "sub") {
    for (int i = 0; i < batch; ++i) {
      for (int j = 0; j < channels; ++j) {
        int offset = (i * channels + j) * num;
        const dtype* din_ptr = x_data + offset;
        const dtype diny_data = y_data[j];
        dtype* dout_ptr = out_data + offset;
        for (int k = 0; k < num; ++k) {
          *dout_ptr = *din_ptr - diny_data;
          dout_ptr++;
          din_ptr++;
        }
      }
    }
  } else {
    LOG(FATAL) << "unsupported Elementwise type: " << elt_type;
  }
  // do activation relu/sigmod...
  if (act_type.size() > 0) {
    if (act_type == "relu") {
      for (int i = 0; i < batch; ++i) {
        for (int j = 0; j < channels; ++j) {
          dtype* dout_ptr = out_data + (i * channels + j) * num;
          for (int k = 0; k < num; ++k) {
            *dout_ptr = *dout_ptr > 0.0f ? *dout_ptr : 0.0f;
            dout_ptr++;
          }
        }
      }
    } else {
      LOG(FATAL) << "unsupported Activation type: " << elt_type;
    }
  }
}

TEST(elementwise_add, compute) {
  ElementwiseAddCompute elementwise_add;
  operators::ElementwiseParam param;
  lite::Tensor x, y, output, output_ref;

T
tensor-tang 已提交
120 121 122 123 124 125 126 127 128 129 130 131 132
#if 1
  for (auto n : {1, 3, 4}) {
    for (auto c : {1, 3, 4}) {
      for (auto h : {1, 3, 4}) {
        for (auto w : {1, 3, 4}) {
          for (auto axis : {-1, 0, 1, 3}) {
            for (auto yd :
                 {std::vector<int64_t>({n}), std::vector<int64_t>({c}),
                  std::vector<int64_t>({h}), std::vector<int64_t>({w}),
                  std::vector<int64_t>({n, c}), std::vector<int64_t>({c, h}),
                  std::vector<int64_t>({c, h, w}),
                  std::vector<int64_t>({n, c, h, w})}) {
#else
133 134 135 136 137 138 139 140 141 142 143 144
  for (auto n : {1, 3, 4, 11}) {
    for (auto c : {1, 3, 4, 11}) {
      for (auto h : {1, 3, 4, 11}) {
        for (auto w : {1, 3, 4, 11}) {
          for (auto axis : {-1, 0, 1, 2, 3}) {
            for (auto yd :
                 {std::vector<int64_t>({n}), std::vector<int64_t>({c}),
                  std::vector<int64_t>({h}), std::vector<int64_t>({w}),
                  std::vector<int64_t>({n, c}), std::vector<int64_t>({c, h}),
                  std::vector<int64_t>({h, w}), std::vector<int64_t>({n, c, h}),
                  std::vector<int64_t>({c, h, w}),
                  std::vector<int64_t>({n, c, h, w})}) {
T
tensor-tang 已提交
145
#endif
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
              auto x_dim = DDim(std::vector<int64_t>({n, c, h, w}));
              auto y_dim = DDim(yd);
              int axis_t = axis < 0 ? x_dim.size() - y_dim.size() : axis;

              if (axis_t + y_dim.size() > 4) continue;
              bool flag = false;
              for (int i = 0; i < y_dim.size(); i++) {
                if (x_dim[i + axis_t] != y_dim[i]) flag = true;
              }
              if (flag) continue;

              x.Resize(x_dim);
              y.Resize(y_dim);
              output.Resize(x_dim);
              output_ref.Resize(x_dim);
              auto* x_data = x.mutable_data<float>();
              auto* y_data = y.mutable_data<float>();
              auto* output_data = output.mutable_data<float>();
              auto* output_ref_data = output_ref.mutable_data<float>();
              for (int i = 0; i < x_dim.production(); i++) {
                x_data[i] = i;
              }
              for (int i = 0; i < y_dim.production(); i++) {
                y_data[i] = i;
              }
              param.X = &x;
              param.Y = &y;
              param.axis = axis;
              param.Out = &output;
              elementwise_add.SetParam(param);
              elementwise_add.Run();
              param.Out = &output_ref;
              elementwise_compute_ref<float>(param, "add", "");
              for (int i = 0; i < output.dims().production(); i++) {
                EXPECT_NEAR(output_data[i], output_ref_data[i], 1e-5);
              }
            }
          }
        }
      }
    }
  }
}

TEST(fusion_elementwise_add_activation_arm, retrive_op) {
  auto fusion_elementwise_add_activation =
      KernelRegistry::Global().Create<TARGET(kARM), PRECISION(kFloat)>(
          "fusion_elementwise_add_activation");
  ASSERT_FALSE(fusion_elementwise_add_activation.empty());
  ASSERT_TRUE(fusion_elementwise_add_activation.front());
}

TEST(fusion_elementwise_add_activation_arm, init) {
  ElementwiseAddActivationCompute fusion_elementwise_add_activation;
  ASSERT_EQ(fusion_elementwise_add_activation.precision(), PRECISION(kFloat));
  ASSERT_EQ(fusion_elementwise_add_activation.target(), TARGET(kARM));
}

TEST(fusion_elementwise_add_activation_arm, compute) {
  ElementwiseAddActivationCompute fusion_elementwise_add_activation;
  operators::FusionElementwiseActivationParam param;
  lite::Tensor x, y, output, output_ref;

T
tensor-tang 已提交
209 210 211 212 213 214 215 216 217 218 219 220 221 222
#if 1
  for (auto act_type : {"relu"}) {
    for (auto n : {1, 3, 4}) {
      for (auto c : {1, 3, 4}) {
        for (auto h : {1, 3, 4}) {
          for (auto w : {1, 3, 4}) {
            for (auto axis : {-1, 0, 1, 3}) {
              for (auto yd :
                   {std::vector<int64_t>({n}), std::vector<int64_t>({c}),
                    std::vector<int64_t>({h}), std::vector<int64_t>({w}),
                    std::vector<int64_t>({n, c}), std::vector<int64_t>({h, w}),
                    std::vector<int64_t>({n, c, h}),
                    std::vector<int64_t>({n, c, h, w})}) {
#else
223 224 225 226 227 228 229 230 231 232 233 234 235 236
  for (auto act_type : {"relu"}) {
    for (auto n : {1, 3, 4, 11}) {
      for (auto c : {1, 3, 4, 11}) {
        for (auto h : {1, 3, 4, 11}) {
          for (auto w : {1, 3, 4, 11}) {
            for (auto axis : {-1, 0, 1, 2, 3}) {
              for (auto yd :
                   {std::vector<int64_t>({n}), std::vector<int64_t>({c}),
                    std::vector<int64_t>({h}), std::vector<int64_t>({w}),
                    std::vector<int64_t>({n, c}), std::vector<int64_t>({c, h}),
                    std::vector<int64_t>({h, w}),
                    std::vector<int64_t>({n, c, h}),
                    std::vector<int64_t>({c, h, w}),
                    std::vector<int64_t>({n, c, h, w})}) {
T
tensor-tang 已提交
237
#endif
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
                auto x_dim = DDim(std::vector<int64_t>({n, c, h, w}));
                auto y_dim = DDim(yd);
                int axis_t = axis < 0 ? x_dim.size() - y_dim.size() : axis;

                if (axis_t + y_dim.size() > 4) continue;
                bool flag = false;
                for (int i = 0; i < y_dim.size(); i++) {
                  if (x_dim[i + axis_t] != y_dim[i]) flag = true;
                }
                if (flag) continue;

                x.Resize(x_dim);
                y.Resize(y_dim);
                output.Resize(x_dim);
                output_ref.Resize(x_dim);
                auto* x_data = x.mutable_data<float>();
                auto* y_data = y.mutable_data<float>();
                auto* output_data = output.mutable_data<float>();
                auto* output_ref_data = output_ref.mutable_data<float>();
                for (int i = 0; i < x_dim.production(); i++) {
                  float sign = i % 3 == 0 ? -1.0f : 1.0f;
                  x_data[i] = i * sign;
                }
                for (int i = 0; i < y_dim.production(); i++) {
                  float sign = i % 2 == 0 ? 0.5f : -0.5f;
                  y_data[i] = i * sign;
                }
                param.X = &x;
                param.Y = &y;
                param.axis = axis;
                param.Out = &output;
                param.act_type = act_type;
                fusion_elementwise_add_activation.SetParam(param);
                fusion_elementwise_add_activation.Run();
                param.Out = &output_ref;
                elementwise_compute_ref<float>(param, "add", act_type);
                for (int i = 0; i < output.dims().production(); i++) {
                  EXPECT_NEAR(output_data[i], output_ref_data[i], 1e-5);
                }
              }
            }
          }
        }
      }
    }
  }
}

}  // namespace arm
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

USE_LITE_KERNEL(elementwise_add, kARM, kFloat, kNCHW, def);
USE_LITE_KERNEL(fusion_elementwise_add_activation, kARM, kFloat, kNCHW, def);