Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
af89b659
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
af89b659
编写于
6月 18, 2019
作者:
H
hong19860320
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add arm kernel for fusion_elementwise_add_activation op
test=develop
上级
ce6c24e6
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
525 addition
and
8 deletion
+525
-8
paddle/fluid/lite/arm/math/elementwise.cc
paddle/fluid/lite/arm/math/elementwise.cc
+131
-3
paddle/fluid/lite/arm/math/elementwise.h
paddle/fluid/lite/arm/math/elementwise.h
+9
-2
paddle/fluid/lite/kernels/arm/CMakeLists.txt
paddle/fluid/lite/kernels/arm/CMakeLists.txt
+3
-3
paddle/fluid/lite/kernels/arm/elementwise_compute.cc
paddle/fluid/lite/kernels/arm/elementwise_compute.cc
+111
-0
paddle/fluid/lite/kernels/arm/elementwise_compute.h
paddle/fluid/lite/kernels/arm/elementwise_compute.h
+8
-0
paddle/fluid/lite/kernels/arm/elementwise_compute_test.cc
paddle/fluid/lite/kernels/arm/elementwise_compute_test.cc
+263
-0
未找到文件。
paddle/fluid/lite/arm/math/elementwise.cc
浏览文件 @
af89b659
...
...
@@ -65,9 +65,61 @@ void elementwise_add<float>(const float* dinx, const float* diny, float* dout,
}
template
<
>
void
elementwise_add_axis
<
float
>
(
const
float
*
dinx
,
const
float
*
diny
,
float
*
dout
,
int
batch
,
int
channels
,
int
num
)
{
void
elementwise_add_relu
<
float
>
(
const
float
*
dinx
,
const
float
*
diny
,
float
*
dout
,
int
num
)
{
int
cnt
=
num
>>
4
;
int
remain
=
num
%
16
;
float32x4_t
vzero
=
vdupq_n_f32
(
0.
f
);
#pragma omp parallel for
for
(
int
i
=
0
;
i
<
cnt
;
i
++
)
{
const
float
*
dinx_ptr
=
dinx
+
(
i
<<
4
);
const
float
*
diny_ptr
=
diny
+
(
i
<<
4
);
float
*
dout_ptr
=
dout
+
(
i
<<
4
);
float32x4_t
dinx0
=
vld1q_f32
(
dinx_ptr
);
float32x4_t
dinx1
=
vld1q_f32
(
dinx_ptr
+
4
);
float32x4_t
dinx2
=
vld1q_f32
(
dinx_ptr
+
8
);
float32x4_t
dinx3
=
vld1q_f32
(
dinx_ptr
+
12
);
float32x4_t
diny0
=
vld1q_f32
(
diny_ptr
);
float32x4_t
diny1
=
vld1q_f32
(
diny_ptr
+
4
);
float32x4_t
diny2
=
vld1q_f32
(
diny_ptr
+
8
);
float32x4_t
diny3
=
vld1q_f32
(
diny_ptr
+
12
);
dinx0
=
vaddq_f32
(
dinx0
,
diny0
);
dinx1
=
vaddq_f32
(
dinx1
,
diny1
);
dinx2
=
vaddq_f32
(
dinx2
,
diny2
);
dinx3
=
vaddq_f32
(
dinx3
,
diny3
);
// relu
dinx0
=
vmaxq_f32
(
dinx0
,
vzero
);
dinx1
=
vmaxq_f32
(
dinx1
,
vzero
);
dinx2
=
vmaxq_f32
(
dinx2
,
vzero
);
dinx3
=
vmaxq_f32
(
dinx3
,
vzero
);
vst1q_f32
(
dout_ptr
,
dinx0
);
vst1q_f32
(
dout_ptr
+
4
,
dinx1
);
vst1q_f32
(
dout_ptr
+
8
,
dinx2
);
vst1q_f32
(
dout_ptr
+
12
,
dinx3
);
}
if
(
remain
>
0
)
{
const
float
*
dinx_ptr
=
dinx
+
(
cnt
<<
4
);
const
float
*
diny_ptr
=
diny
+
(
cnt
<<
4
);
float
*
dout_ptr
=
dout
+
(
cnt
<<
4
);
for
(
int
i
=
0
;
i
<
remain
;
i
++
)
{
float
tmp
=
*
dinx_ptr
+
*
diny_ptr
;
*
dout_ptr
=
tmp
>
0.
f
?
tmp
:
0.
f
;
dout_ptr
++
;
dinx_ptr
++
;
diny_ptr
++
;
}
}
}
template
<
>
void
elementwise_add_broadcast
<
float
>
(
const
float
*
dinx
,
const
float
*
diny
,
float
*
dout
,
int
batch
,
int
channels
,
int
num
)
{
#pragma omp parallel for collapse(2)
for
(
int
i
=
0
;
i
<
batch
;
++
i
)
{
for
(
int
j
=
0
;
j
<
channels
;
++
j
)
{
...
...
@@ -127,6 +179,82 @@ void elementwise_add_axis<float>(const float* dinx, const float* diny,
}
}
template
<
>
void
elementwise_add_relu_broadcast
<
float
>
(
const
float
*
dinx
,
const
float
*
diny
,
float
*
dout
,
int
batch
,
int
channels
,
int
num
)
{
float32x4_t
vzero
=
vdupq_n_f32
(
0.
f
);
#pragma omp parallel for collapse(2)
for
(
int
i
=
0
;
i
<
batch
;
++
i
)
{
for
(
int
j
=
0
;
j
<
channels
;
++
j
)
{
int
offset
=
(
i
*
channels
+
j
)
*
num
;
const
float
*
din_ptr
=
dinx
+
offset
;
const
float
diny_data
=
diny
[
j
];
float
*
dout_ptr
=
dout
+
offset
;
int
cnt
=
num
>>
4
;
int
remain
=
num
%
16
;
float32x4_t
rb
=
vdupq_n_f32
(
diny_data
);
for
(
int
k
=
0
;
k
<
cnt
;
++
k
)
{
float32x4_t
din0
=
vld1q_f32
(
din_ptr
);
float32x4_t
din1
=
vld1q_f32
(
din_ptr
+
4
);
float32x4_t
din2
=
vld1q_f32
(
din_ptr
+
8
);
float32x4_t
din3
=
vld1q_f32
(
din_ptr
+
12
);
din0
=
vaddq_f32
(
din0
,
rb
);
din1
=
vaddq_f32
(
din1
,
rb
);
din2
=
vaddq_f32
(
din2
,
rb
);
din3
=
vaddq_f32
(
din3
,
rb
);
// relu
din0
=
vmaxq_f32
(
din0
,
vzero
);
din1
=
vmaxq_f32
(
din1
,
vzero
);
din2
=
vmaxq_f32
(
din2
,
vzero
);
din3
=
vmaxq_f32
(
din3
,
vzero
);
vst1q_f32
(
dout_ptr
,
din0
);
vst1q_f32
(
dout_ptr
+
4
,
din1
);
vst1q_f32
(
dout_ptr
+
8
,
din2
);
vst1q_f32
(
dout_ptr
+
12
,
din3
);
din_ptr
+=
16
;
dout_ptr
+=
16
;
}
if
(
remain
>=
8
)
{
float32x4_t
din0
=
vld1q_f32
(
din_ptr
);
float32x4_t
din1
=
vld1q_f32
(
din_ptr
+
4
);
din0
=
vaddq_f32
(
din0
,
rb
);
din1
=
vaddq_f32
(
din1
,
rb
);
// relu
din0
=
vmaxq_f32
(
din0
,
vzero
);
din1
=
vmaxq_f32
(
din1
,
vzero
);
vst1q_f32
(
dout_ptr
,
din0
);
vst1q_f32
(
dout_ptr
+
4
,
din1
);
din_ptr
+=
8
;
dout_ptr
+=
8
;
remain
-=
8
;
}
if
(
remain
>=
4
)
{
float32x4_t
din0
=
vld1q_f32
(
din_ptr
);
din0
=
vaddq_f32
(
din0
,
rb
);
// relu
din0
=
vmaxq_f32
(
din0
,
vzero
);
vst1q_f32
(
dout_ptr
,
din0
);
din_ptr
+=
4
;
dout_ptr
+=
4
;
remain
-=
4
;
}
if
(
remain
>
0
)
{
for
(
int
p
=
0
;
p
<
remain
;
p
++
)
{
float
tmp
=
*
din_ptr
+
diny_data
;
*
dout_ptr
=
tmp
>
0.
f
?
tmp
:
0.
f
;
dout_ptr
++
;
din_ptr
++
;
}
}
}
}
}
}
// namespace math
}
// namespace arm
}
// namespace lite
...
...
paddle/fluid/lite/arm/math/elementwise.h
浏览文件 @
af89b659
...
...
@@ -23,8 +23,15 @@ template <typename T>
void
elementwise_add
(
const
T
*
dinx
,
const
T
*
diny
,
T
*
dout
,
int
num
);
template
<
typename
T
>
void
elementwise_add_axis
(
const
T
*
dinx
,
const
T
*
diny
,
T
*
dout
,
int
batch
,
int
channels
,
int
num
);
void
elementwise_add_relu
(
const
T
*
dinx
,
const
T
*
diny
,
T
*
dout
,
int
num
);
template
<
typename
T
>
void
elementwise_add_broadcast
(
const
T
*
dinx
,
const
T
*
diny
,
T
*
dout
,
int
batch
,
int
channels
,
int
num
);
template
<
typename
T
>
void
elementwise_add_relu_broadcast
(
const
T
*
dinx
,
const
T
*
diny
,
T
*
dout
,
int
batch
,
int
channels
,
int
num
);
}
// namespace math
}
// namespace arm
...
...
paddle/fluid/lite/kernels/arm/CMakeLists.txt
浏览文件 @
af89b659
...
...
@@ -11,7 +11,7 @@ cc_library(scale_compute_arm SRCS scale_compute.cc DEPS ${lite_kernel_deps} math
cc_library
(
softmax_compute_arm SRCS softmax_compute.cc DEPS
${
lite_kernel_deps
}
math_arm
)
cc_library
(
conv_compute_arm SRCS conv_compute.cc DEPS
${
lite_kernel_deps
}
math_arm
)
cc_library
(
batch_norm_compute_arm SRCS batch_norm_compute.cc DEPS
${
lite_kernel_deps
}
math_arm
)
cc_library
(
elementwise_
add_compute_arm SRCS elementwise_add
_compute.cc DEPS
${
lite_kernel_deps
}
math_arm
)
cc_library
(
elementwise_
compute_arm SRCS elementwise
_compute.cc DEPS
${
lite_kernel_deps
}
math_arm
)
cc_library
(
pool_compute_arm SRCS pool_compute.cc DEPS
${
lite_kernel_deps
}
math_arm
)
cc_library
(
split_compute_arm SRCS split_compute.cc DEPS
${
lite_kernel_deps
}
math_arm
)
cc_library
(
concat_compute_arm SRCS concat_compute.cc DEPS
${
lite_kernel_deps
}
math_arm
)
...
...
@@ -24,7 +24,7 @@ lite_cc_test(test_scale_compute_arm SRCS scale_compute_test.cc DEPS scale_comput
lite_cc_test
(
test_softmax_compute_arm SRCS softmax_compute_test.cc DEPS softmax_compute_arm
)
lite_cc_test
(
test_conv_compute_arm SRCS conv_compute_test.cc DEPS conv_compute_arm
)
lite_cc_test
(
test_batch_norm_compute_arm SRCS batch_norm_compute_test.cc DEPS batch_norm_compute_arm
)
lite_cc_test
(
test_elementwise_
add_compute_arm SRCS elementwise_add_compute_test.cc DEPS elementwise_add
_compute_arm
)
lite_cc_test
(
test_elementwise_
compute_arm SRCS elementwise_compute_test.cc DEPS elementwise
_compute_arm
)
lite_cc_test
(
test_pool_compute_arm SRCS pool_compute_test.cc DEPS pool_compute_arm
)
lite_cc_test
(
test_mul_compute_arm SRCS mul_compute_test.cc DEPS mul_compute_arm
)
lite_cc_test
(
test_split_compute_arm SRCS split_compute_test.cc DEPS split_compute_arm
)
...
...
@@ -40,7 +40,7 @@ set(arm_kernels
softmax_compute_arm
conv_compute_arm
batch_norm_compute_arm
elementwise_
add_
compute_arm
elementwise_compute_arm
pool_compute_arm
split_compute_arm
concat_compute_arm
...
...
paddle/fluid/lite/kernels/arm/elementwise_
add_
compute.cc
→
paddle/fluid/lite/kernels/arm/elementwise_compute.cc
浏览文件 @
af89b659
...
...
@@ -12,7 +12,8 @@
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/lite/kernels/arm/elementwise_add_compute.h"
#include "paddle/fluid/lite/kernels/arm/elementwise_compute.h"
#include <string>
#include "paddle/fluid/lite/arm/math/funcs.h"
namespace
paddle
{
...
...
@@ -20,6 +21,30 @@ namespace lite {
namespace
kernels
{
namespace
arm
{
inline
bool
is_broadcast
(
const
DDim
&
x_dims
,
const
DDim
&
y_dims
,
int
axis
,
int
*
pre
,
int
*
n
,
int
*
post
)
{
if
(
axis
<
0
)
{
axis
=
x_dims
.
size
()
-
y_dims
.
size
();
}
if
(
x_dims
.
size
()
==
y_dims
.
size
())
{
return
false
;
}
*
pre
=
1
;
*
n
=
1
;
*
post
=
1
;
for
(
int
i
=
0
;
i
<
axis
;
++
i
)
{
(
*
pre
)
*=
x_dims
[
i
];
}
for
(
int
i
=
0
;
i
<
y_dims
.
size
();
++
i
)
{
CHECK_EQ
(
x_dims
[
i
+
axis
],
y_dims
[
i
])
<<
"Broadcast dimension mismatch."
;
(
*
n
)
*=
y_dims
[
i
];
}
for
(
int
i
=
axis
+
y_dims
.
size
();
i
<
x_dims
.
size
();
++
i
)
{
(
*
post
)
*=
x_dims
[
i
];
}
return
true
;
}
void
ElementwiseAddCompute
::
Run
()
{
auto
&
param
=
Param
<
operators
::
ElementwiseParam
>
();
const
float
*
x_data
=
param
.
X
->
data
<
float
>
();
...
...
@@ -28,27 +53,40 @@ void ElementwiseAddCompute::Run() {
int
axis
=
param
.
axis
;
auto
x_dims
=
param
.
X
->
dims
();
auto
y_dims
=
param
.
Y
->
dims
();
if
(
axis
<
0
)
{
axis
=
x_dims
.
size
()
-
y_dims
.
size
();
}
if
(
x_dims
.
size
()
==
y_dims
.
size
())
{
int
pre
,
n
,
post
;
if
(
is_broadcast
(
x_dims
,
y_dims
,
axis
,
&
pre
,
&
n
,
&
post
))
{
lite
::
arm
::
math
::
elementwise_add_broadcast
(
x_data
,
y_data
,
out_data
,
pre
,
n
,
post
);
}
else
{
lite
::
arm
::
math
::
elementwise_add
(
x_data
,
y_data
,
out_data
,
x_dims
.
production
());
}
else
{
int
batch
=
1
;
int
channels
=
1
;
int
num
=
1
;
for
(
int
i
=
0
;
i
<
axis
;
++
i
)
{
batch
*=
x_dims
[
i
];
}
for
(
int
i
=
0
;
i
<
y_dims
.
size
();
++
i
)
{
channels
*=
y_dims
[
i
];
}
}
void
ElementwiseAddActivationCompute
::
Run
()
{
auto
&
param
=
Param
<
operators
::
FusionElementwiseActivationParam
>
();
const
float
*
x_data
=
param
.
X
->
data
<
float
>
();
const
float
*
y_data
=
param
.
Y
->
data
<
float
>
();
float
*
out_data
=
param
.
Out
->
mutable_data
<
float
>
();
int
axis
=
param
.
axis
;
std
::
string
act_type
=
param
.
act_type
;
auto
x_dims
=
param
.
X
->
dims
();
auto
y_dims
=
param
.
Y
->
dims
();
int
pre
,
n
,
post
;
if
(
is_broadcast
(
x_dims
,
y_dims
,
axis
,
&
pre
,
&
n
,
&
post
))
{
if
(
act_type
==
"relu"
)
{
lite
::
arm
::
math
::
elementwise_add_relu_broadcast
(
x_data
,
y_data
,
out_data
,
pre
,
n
,
post
);
}
else
{
LOG
(
FATAL
)
<<
"unsupported Activation type: "
<<
act_type
;
}
for
(
int
i
=
y_dims
.
size
()
+
axis
;
i
<
x_dims
.
size
();
++
i
)
{
num
*=
x_dims
[
i
];
}
else
{
if
(
act_type
==
"relu"
)
{
lite
::
arm
::
math
::
elementwise_add_relu
(
x_data
,
y_data
,
out_data
,
x_dims
.
production
());
}
else
{
LOG
(
FATAL
)
<<
"unsupported Activation type: "
<<
act_type
;
}
lite
::
arm
::
math
::
elementwise_add_axis
(
x_data
,
y_data
,
out_data
,
batch
,
channels
,
num
);
}
}
...
...
@@ -63,3 +101,11 @@ REGISTER_LITE_KERNEL(elementwise_add, kARM, kFloat, kNCHW,
.
BindInput
(
"Y"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kARM
))})
.
BindOutput
(
"Out"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kARM
))})
.
Finalize
();
REGISTER_LITE_KERNEL
(
fusion_elementwise_add_activation
,
kARM
,
kFloat
,
kNCHW
,
paddle
::
lite
::
kernels
::
arm
::
ElementwiseAddActivationCompute
,
def
)
.
BindInput
(
"X"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kARM
))})
.
BindInput
(
"Y"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kARM
))})
.
BindOutput
(
"Out"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kARM
))})
.
Finalize
();
paddle/fluid/lite/kernels/arm/elementwise_
add_
compute.h
→
paddle/fluid/lite/kernels/arm/elementwise_compute.h
浏览文件 @
af89b659
...
...
@@ -30,6 +30,14 @@ class ElementwiseAddCompute
virtual
~
ElementwiseAddCompute
()
=
default
;
};
class
ElementwiseAddActivationCompute
:
public
KernelLite
<
TARGET
(
kARM
),
PRECISION
(
kFloat
)
>
{
public:
void
Run
()
override
;
virtual
~
ElementwiseAddActivationCompute
()
=
default
;
};
}
// namespace arm
}
// namespace kernels
}
// namespace lite
...
...
paddle/fluid/lite/kernels/arm/elementwise_
add_
compute_test.cc
→
paddle/fluid/lite/kernels/arm/elementwise_compute_test.cc
浏览文件 @
af89b659
...
...
@@ -12,8 +12,9 @@
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/lite/kernels/arm/elementwise_
add_
compute.h"
#include "paddle/fluid/lite/kernels/arm/elementwise_compute.h"
#include <gtest/gtest.h>
#include <string>
#include <vector>
#include "paddle/fluid/lite/core/op_registry.h"
...
...
@@ -37,7 +38,9 @@ TEST(elementwise_add_arm, init) {
}
template
<
typename
dtype
>
void
elementwise_add_compute_ref
(
const
operators
::
ElementwiseParam
&
param
)
{
void
elementwise_compute_ref
(
const
operators
::
ElementwiseParam
&
param
,
const
std
::
string
elt_type
,
const
std
::
string
act_type
)
{
const
dtype
*
x_data
=
param
.
X
->
data
<
const
dtype
>
();
const
dtype
*
y_data
=
param
.
Y
->
data
<
const
dtype
>
();
dtype
*
out_data
=
param
.
Out
->
mutable_data
<
dtype
>
();
...
...
@@ -59,17 +62,52 @@ void elementwise_add_compute_ref(const operators::ElementwiseParam& param) {
for
(
int
i
=
y_dims
.
size
()
+
axis
;
i
<
x_dims
.
size
();
++
i
)
{
num
*=
x_dims
[
i
];
}
for
(
int
i
=
0
;
i
<
batch
;
++
i
)
{
for
(
int
j
=
0
;
j
<
channels
;
++
j
)
{
int
offset
=
(
i
*
channels
+
j
)
*
num
;
const
dtype
*
din_ptr
=
x_data
+
offset
;
const
dtype
diny_data
=
y_data
[
j
];
dtype
*
dout_ptr
=
out_data
+
offset
;
for
(
int
k
=
0
;
k
<
num
;
++
k
)
{
*
dout_ptr
=
*
din_ptr
+
diny_data
;
dout_ptr
++
;
din_ptr
++
;
// do elementwise add/sub/max...
if
(
elt_type
==
"add"
)
{
for
(
int
i
=
0
;
i
<
batch
;
++
i
)
{
for
(
int
j
=
0
;
j
<
channels
;
++
j
)
{
int
offset
=
(
i
*
channels
+
j
)
*
num
;
const
dtype
*
din_ptr
=
x_data
+
offset
;
const
dtype
diny_data
=
y_data
[
j
];
dtype
*
dout_ptr
=
out_data
+
offset
;
for
(
int
k
=
0
;
k
<
num
;
++
k
)
{
*
dout_ptr
=
*
din_ptr
+
diny_data
;
dout_ptr
++
;
din_ptr
++
;
}
}
}
}
else
if
(
elt_type
==
"sub"
)
{
for
(
int
i
=
0
;
i
<
batch
;
++
i
)
{
for
(
int
j
=
0
;
j
<
channels
;
++
j
)
{
int
offset
=
(
i
*
channels
+
j
)
*
num
;
const
dtype
*
din_ptr
=
x_data
+
offset
;
const
dtype
diny_data
=
y_data
[
j
];
dtype
*
dout_ptr
=
out_data
+
offset
;
for
(
int
k
=
0
;
k
<
num
;
++
k
)
{
*
dout_ptr
=
*
din_ptr
-
diny_data
;
dout_ptr
++
;
din_ptr
++
;
}
}
}
}
else
{
LOG
(
FATAL
)
<<
"unsupported Elementwise type: "
<<
elt_type
;
}
// do activation relu/sigmod...
if
(
act_type
.
size
()
>
0
)
{
if
(
act_type
==
"relu"
)
{
for
(
int
i
=
0
;
i
<
batch
;
++
i
)
{
for
(
int
j
=
0
;
j
<
channels
;
++
j
)
{
dtype
*
dout_ptr
=
out_data
+
(
i
*
channels
+
j
)
*
num
;
for
(
int
k
=
0
;
k
<
num
;
++
k
)
{
*
dout_ptr
=
*
dout_ptr
>
0.0
f
?
*
dout_ptr
:
0.0
f
;
dout_ptr
++
;
}
}
}
}
else
{
LOG
(
FATAL
)
<<
"unsupported Activation type: "
<<
elt_type
;
}
}
}
...
...
@@ -123,7 +161,7 @@ TEST(elementwise_add, compute) {
elementwise_add
.
SetParam
(
param
);
elementwise_add
.
Run
();
param
.
Out
=
&
output_ref
;
elementwise_
add_compute_ref
<
float
>
(
param
);
elementwise_
compute_ref
<
float
>
(
param
,
"add"
,
""
);
for
(
int
i
=
0
;
i
<
output
.
dims
().
production
();
i
++
)
{
EXPECT_NEAR
(
output_data
[
i
],
output_ref_data
[
i
],
1e-5
);
}
...
...
@@ -135,9 +173,91 @@ TEST(elementwise_add, compute) {
}
}
TEST
(
fusion_elementwise_add_activation_arm
,
retrive_op
)
{
auto
fusion_elementwise_add_activation
=
KernelRegistry
::
Global
().
Create
<
TARGET
(
kARM
),
PRECISION
(
kFloat
)
>
(
"fusion_elementwise_add_activation"
);
ASSERT_FALSE
(
fusion_elementwise_add_activation
.
empty
());
ASSERT_TRUE
(
fusion_elementwise_add_activation
.
front
());
}
TEST
(
fusion_elementwise_add_activation_arm
,
init
)
{
ElementwiseAddActivationCompute
fusion_elementwise_add_activation
;
ASSERT_EQ
(
fusion_elementwise_add_activation
.
precision
(),
PRECISION
(
kFloat
));
ASSERT_EQ
(
fusion_elementwise_add_activation
.
target
(),
TARGET
(
kARM
));
}
TEST
(
fusion_elementwise_add_activation_arm
,
compute
)
{
ElementwiseAddActivationCompute
fusion_elementwise_add_activation
;
operators
::
FusionElementwiseActivationParam
param
;
lite
::
Tensor
x
,
y
,
output
,
output_ref
;
for
(
auto
act_type
:
{
"relu"
})
{
for
(
auto
n
:
{
1
,
3
,
4
,
11
})
{
for
(
auto
c
:
{
1
,
3
,
4
,
11
})
{
for
(
auto
h
:
{
1
,
3
,
4
,
11
})
{
for
(
auto
w
:
{
1
,
3
,
4
,
11
})
{
for
(
auto
axis
:
{
-
1
,
0
,
1
,
2
,
3
})
{
for
(
auto
yd
:
{
std
::
vector
<
int64_t
>
({
n
}),
std
::
vector
<
int64_t
>
({
c
}),
std
::
vector
<
int64_t
>
({
h
}),
std
::
vector
<
int64_t
>
({
w
}),
std
::
vector
<
int64_t
>
({
n
,
c
}),
std
::
vector
<
int64_t
>
({
c
,
h
}),
std
::
vector
<
int64_t
>
({
h
,
w
}),
std
::
vector
<
int64_t
>
({
n
,
c
,
h
}),
std
::
vector
<
int64_t
>
({
c
,
h
,
w
}),
std
::
vector
<
int64_t
>
({
n
,
c
,
h
,
w
})})
{
auto
x_dim
=
DDim
(
std
::
vector
<
int64_t
>
({
n
,
c
,
h
,
w
}));
auto
y_dim
=
DDim
(
yd
);
int
axis_t
=
axis
<
0
?
x_dim
.
size
()
-
y_dim
.
size
()
:
axis
;
if
(
axis_t
+
y_dim
.
size
()
>
4
)
continue
;
bool
flag
=
false
;
for
(
int
i
=
0
;
i
<
y_dim
.
size
();
i
++
)
{
if
(
x_dim
[
i
+
axis_t
]
!=
y_dim
[
i
])
flag
=
true
;
}
if
(
flag
)
continue
;
x
.
Resize
(
x_dim
);
y
.
Resize
(
y_dim
);
output
.
Resize
(
x_dim
);
output_ref
.
Resize
(
x_dim
);
auto
*
x_data
=
x
.
mutable_data
<
float
>
();
auto
*
y_data
=
y
.
mutable_data
<
float
>
();
auto
*
output_data
=
output
.
mutable_data
<
float
>
();
auto
*
output_ref_data
=
output_ref
.
mutable_data
<
float
>
();
for
(
int
i
=
0
;
i
<
x_dim
.
production
();
i
++
)
{
float
sign
=
i
%
3
==
0
?
-
1.0
f
:
1.0
f
;
x_data
[
i
]
=
i
*
sign
;
}
for
(
int
i
=
0
;
i
<
y_dim
.
production
();
i
++
)
{
float
sign
=
i
%
2
==
0
?
0.5
f
:
-
0.5
f
;
y_data
[
i
]
=
i
*
sign
;
}
param
.
X
=
&
x
;
param
.
Y
=
&
y
;
param
.
axis
=
axis
;
param
.
Out
=
&
output
;
param
.
act_type
=
act_type
;
fusion_elementwise_add_activation
.
SetParam
(
param
);
fusion_elementwise_add_activation
.
Run
();
param
.
Out
=
&
output_ref
;
elementwise_compute_ref
<
float
>
(
param
,
"add"
,
act_type
);
for
(
int
i
=
0
;
i
<
output
.
dims
().
production
();
i
++
)
{
EXPECT_NEAR
(
output_data
[
i
],
output_ref_data
[
i
],
1e-5
);
}
}
}
}
}
}
}
}
}
}
// namespace arm
}
// namespace kernels
}
// namespace lite
}
// namespace paddle
USE_LITE_KERNEL
(
elementwise_add
,
kARM
,
kFloat
,
kNCHW
,
def
);
USE_LITE_KERNEL
(
fusion_elementwise_add_activation
,
kARM
,
kFloat
,
kNCHW
,
def
);
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录